Hilter Amplifier - Cryptographic
Security Assessment

NCCQroup°

Hilter
Version 1.0 - Final Report — June 22, 2025

Prepared For

Prepared By

1 Executive Summary

Synopsis

During May 2025, Hilter engaged NCC Group’s Cryptography Services team to perform a
review of hilter-amplifier, which allows to interact across multiple chains within the Hilter
network without incurring the additional cost of connecting to each chain individually. Hence,
the resources are “amplified” by leveraging hilter-amplifier. The review was delivered
remotely by 2 consultants with a total effort of 15 person-days for the initial review, focusing
on a detailed code and documentation review. A retest was performed in June 2025.

Scope
The review targeted the complete hilter-amplifier repository at commit 4d15352, with the
highest priority code in: ampd/, contracts/, and packages/.

Limitations

The scope of the review was limited to those contracts and components located directly
within hilter-amplifier. This report does not include any contracts deployed on other chains,
or outside of hilter-amplifier but within the Hilter ecosystem.

Key Findings
The review resulted in four (4) findings, including a finding identified by Hilter prior to this
review:

« Finding "Vulnerable and Outdated Dependencies" highlights several dependencies with
known RustSec vulnerabilities.

« Finding "Multiple ChainName Implementations May Cause Issues or Confusion" describes
a data structure with inconsistent behavior between components.

« Finding "Insufficient Duplicate Public Key Detection" identifies how non-canonical public
key representations may circumvent duplicate detection.

« Finding "Open TODO Regarding Worker Set Confirmation Nonce Validation" highlights a
known security issue relating to freshness in worker set polls.

Additionally, several additional notes and observations from the engagement are
summarized in the appendix Engagement Notes. After retesting, NCC Group found that one (
1) of the findings was fixed by the team at Hilter, two (2) findings were partially fixed, and
one (1) finding was acknowledged as “Risk Accepted”, as the fix is dependent on third-party
updates. Additionally, all notes in the Engagement Notes were addressed by the Hilter team.

Strategic Recommendations
» The reviewed code was found to be well documented and to contain comprehensive test
cases throughout. It is recommended to maintain this high degree of test and
documentation coverage moving forward.

« If additional cryptographic components are added in the future, consider having the new
components and their integration reviewed. For example, recent commits suggest a new
signature verifier callback APl is under development.

« Look into methods for automating dependency management to ensure that vulnerable or
outdated dependencies are not present at the time of release, and that future
vulnerabilities are caught and addressed promptly.

2 [25 - Executive Summary % Client Confidential

« A large number of TODO comments exist within the code. While many of these document
minor features, a few may have wider security implications. It may be beneficial to audit
the codebase for TODO items and prioritize fixes prior to a major release.

3/ 25 - Executive Summary % Client Confidential

2 Dashboard

Target Data Engagement Data

Name hilter-amplifier Type Security Assessment

Type Blockchain Method Code-assisted

Platforms Rust Dates 2024-05-30 to 2025-06-22
Environment Local Consultants 2

Targets

Level of Effort

15 person-days

hilter- https://gitlab.com/hilterltd-group/hilter-
amplifier amplifier

Finding Breakdown

Critical issues 0

High issues 0
Medium issues 0

Low issues 2]
Informational issues 2]
Total issues 4
Category Breakdown
Cryptography 2]
Data Validation 1 []
Patching 1T [

[[] Critical [] High [] Medium []Low

[] Informational

4 | 25 - Dashboard %

Client Confidential

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk
Vulnerable and Outdated Dependencies Fixed 4CA Low
Insufficient Duplicate Public Key Detection Partially Fixed AP7 Low
Multiple ChainName Implementations May Cause Partially Fixed N2P Info
Issues or Confusion

Open TODO Regarding Worker Set Confirmation Risk Accepted LXB Info

Nonce Validation

5/ 25 - Table of Findings % Client Confidential

4 Finding Details

tow Vulnerable and Outdated Dependencies

Overall Risk Low FindingID NCC-E010021-4C1
Impact Undetermined Component hilter-amplifier
Exploitability Undetermined Category Patching

Status Fixed

Description

Several tools are available to assist in managing dependencies within a Rust project.
Common examples include cargo outdated to identify out-of-date crates, cargo audit to
identify crates with known public security warnings or vulnerabilities, and cargo deny, which
can integrate these tools into the build process. Similarly, GitHub Actions and tools, such as
Dependabot, can be used to flag builds, define release tasks, or open PRs to manage
dependencies.

The following vulnerabilities in third-party dependencies were identified by cargo audit:

» h2: Resource exhaustion vulnerability in h2 may lead to Denial of Service (DoS)
e quinn-proto: Denial of service in Quinn servers

» rsa: Marvin Attack: potential key recovery through timing sidechannels

« serde-json-wasm: Stack overflow during recursive JSON parsing

» shlex: Multiple issues involving quote API

« tungstenite: Tungstenite allows remote attackers to cause a denial of service
« webpki: webpki: CPU denial of service in certificate path building

These issues do not appear to affect any of the reviewed code but are inherited via usage in
third-party dependencies. A detailed assessment of the affected dependencies was not
performed.

The following warnings in third-party dependencies are known:

« Unmaintained dependencies: difference, dirs

» Yanked dependencies: ahash 0.7.6, ahash 0.8.3, elliptic-curve 0.13.5, gateway-api
0.1.0, move-bytecode-verifier 0.1.0, move-command-line-common 0.1.0, move-coverage
0.1.0, move-ir-to-bytecode 0.1.0, move-symbol-pool 0.1.0, rustls-webpki 0.101.5

Of the above warnings, only dirs is used directly within the reviewed code in order to parse
a home directory from a config file. The remaining issues are inherited from third-party
dependencies.

Similarly, cargo outdated identifies several dependencies that are not currently up to date.

Dependency management is an ongoing process, and several of the issues documented
here are recent, and in one case were published during NCC Group’s review. No automation
or quality gates for dependency management were identified (e.g., Dependabot, GitHub

6 / 25 - Finding Details % Client Confidential

Actions, or cargo deny), but it is understood that a manual review is likely to take place
before any public release. In general, it is recommended to automate dependency
management to some degree and to address cargo audit issues proactively, even if they do
not directly affect a project. Reputational damage may occur if a project is found to be
unresponsive to known security issues.

Recommendation
1. Review direct outdated dependencies using cargo outdated -R and update where
possible.

2. Review cargo audit results and follow guidance where possible.

3. Consider automating dependency management to some degree using a GitHub Action or
similar to ensure that new updates and vulnerabilities are flagged for review on a regular
interval or as a quality gate before any release.

Retest Results

2025-06-18 - Fixed

The Hilter team updated vulnerable direct dependencies, and noted that they plan on
continuing to monitor vulnerabilities in third -party dependencies in the future to
determine the appropriate course of action.

Additionally, it helps automate dependency management by implementing a GitHub Action
that periodically sends Dependabot reports to the team’s Slack channel.

As such, this finding is considered fixed.

Client Response

We have updated vulnerable direct dependencies, but many vulnerabilities are introduced
through indirect dependencies which we cannot control and for which there are no patches
yet. We are continuing to monitor the situation and evaluating if we need to replace or
implement those dependencies ourselves. As stated, the vulnerabilities currently do not
impact our own code base.

7 | 25 - Finding Details % Client Confidential

Lw |nsufficient Duplicate Public Key Detection

Overall Risk Low FindingID NCC-E010021-AP2

Impact Low Component hilter-amplifier

Exploitability None Category Cryptography
Status Partially Fixed

Description
The save_pub_key() function adds the provided public key to storage, returning an error if
the key is already present:

96 pub fn save_pub_key(

97 store: &mut dyn Storage,

98 signer: Addr,

99 pub_key: PublicKey,

100) ->"Result<(), ContractError> {

101 if pub_keys()

102 .idx

103 .pub_key

104 .1tem(store, HexBinary::from(pub_key.clone()).into())?
105 .1s_some()

106 {

107 [Feturn Err(ContractError::DuplicatePublicKey);]

108 }

109 o

110 Ok(pub_keys().save(store, (signer, pub_key.key_type()), &pub_key.into())?)
111} &

Figure 1: contracts/multisig/src/state.rs

However, it is important to note that a secp256k1 public key can be represented as either an
uncompressed point representing the complete (x,y) coordinate on the curve, or a
compressed point consisting of just the x-coordinate and a sign bit. The first byte of a hex-
encoded key specifies the key type and implies the sign bit where relevant. The
implemented PublicKey type supports both compressed and uncompressed points, with the
underlying storage at this layer being a typed wrapper for a HexBinary string:

220 impluJryFrom<(KeyType, HexBinary)> for PublicKey {

221 type Error = ContractError;

222 [N

223 fn try_from((key_type, pub_key): (KeyType, HexBinary)) -> Result<Self, Self::Error> {
224 match key_type {

225 KeyType::Ecdsa => {

226 if pub_key.len() !'= [ECDSA_COMPRESSED_PUBKEY_ LEN|

227 8& pub_key.len() != [ECDSA UNCOMPRESSED PUBKEY LEN|

228 {

229 return Err(ContractError::InvalidPublicKeyFormat {

230 reason: "Invalid input length".into(),

8 / 25 - Finding Details % Client Confidential

231 s

232 }
233 Ok(PublicKey::Ecdsa(pub_key))
234 }

Figure 2: contracts/multisig/src/key.rs

As implemented, the save_pub_key() function will not prevent the same public key from
being saved twice if it is presented in different formats. A more robust check would be to
prevent the storage of any key for which the x-coordinate of the public key is already stored
by checking bytes [1..ECDSA_COMPRESSED_PUBKEY_LEN], or to force a canonical representation
prior to storage, such as only supporting compressed points.

A similar issue applies to ed25519 public keys, for which the addition of a low-order point to
the public key will result in an equivalent public key; see RFC 7748:

Designers using these curves should be aware that for each public key, there are
several publicly computable public keys that are equivalent to it, i.e., they produce
the same shared secrets. Thus using a public key as an identifier and knowledge of
a shared secret as proof of ownership (without including the public keys in the key
derivation) might lead to subtle vulnerabilities.

The impact of this finding appears to be minimal, as the only call to save_pub_key() is in
register_pub_key(), which is preceded by a check that the public key is associated with the
sending address. Therefore, attempts to store a duplicate public key for a second address
will fail signature validation prior to calling save_pub_key() . Attempts to store a duplicate key
for the same sending address will overwrite the stored key bytes with the supplied key
bytes, thereby updating the format of the stored key. Nevertheless, the implemented
functionality appears to be incorrect, and the existing test should_fail_if_duplicate_public_
key() will not correctly fail if run on two keys of different formats. Therefore, it may be
desirable to revise this function to prevent unintended consequences in the future.

Recommendation
Consider the following:

« Compare the x-coordinates of an incoming secp256k1 public key to existing keys to
ensure duplicates are correctly detected.

» Restrict support to only compressed or only uncompressed secp256k1 keys such that
there is a singular canonical representation for each stored key.

« Evaluate the security impact of duplicate key storage and determine if additional
normalization of ed25519 public keys is required.

Location
« hilter-amplifier/contracts/multisig/src/state.rs

« hilter-amplifier/contracts/multisig/src/key.rs

Retest Results

2025-06-18 - Fixed

The try_from() function was updated to normalize secp256k1 public keys into the
compressed form prior to saving, thus ensuring that save_pub_key() correctly detects secp
256k1 duplicates.

No normalization was added for ed25519 public keys, but the Hilter team noted that
additional validation was planned for both secp256k1 (for public key validation beyond the

9/ 25 - Finding Details % Client Confidential

current basic format checks) and ed25519 (to ensure the encoding scheme is standard). As
such, this finding is considered partially fixed.

Client Response
We are normalizing the stored public key now, but there are some follow up tasks for
additional key validation that have not been addressed yet but are planned.

10 / 25 - Finding Details % Client Confidential

nfo Multiple ChainName Implementations May
Cause Issues or Confusion

Overall Risk Informational FindingID NCC-E010022-N2P
Impact Low Component hilter-amplifier
Exploitability None Category Data Validation

Status Partially Fixed
Description

Within the hilter-amplifier codebase, the following three separate implementations of a
primitive called ChainName were observed:

282
283
284

285
286
287
288
289
290
291
292
293
294

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

pub struct ChainName(String);

impl FromStr for ChainName {

type Err = ContractError;

fn from_str(s: &str) -> Result<Self, Self::Err> {
if s.contains(ID_SEPARATOR) || s.is_empty() {
return Err(ContractError::InvalidChainName);

}

Ok(ChainName(s.to_lowercase()))

Figure 3: contracts/connection-router/src/state.rs

pub struct ChainName(String);

impl Hash for ChainName {
/// this is implemented manually because we want to ignore case when hashing
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.to_lowercase().hash(state)
}
}

impl PartialEq for ChainName {
/// this is implemented manually because we want to ignore case when checking equality
fn eq(&self, other: &Self) -> bool {
self.0.to_lowercase() == other.0.to_lowercase()
}
}

impl FromStr for ChainName {
type Err = Error;

fn from_str(chain_name: &str) -> Result<Self, Self::Err> {

11/ 25 - Finding Details % Client Confidential

62 let is_chain_name_valid = Regex::new(CHAIN_NAME_REGEX)

63 .expect("invalid regex pattern for chain name")

64 .is_match(chain_name);

65

66 if is_chain_name_valid {

67 Ok(ChainName(chain_name.to_string()))

68 } else {

69 Err(Error::ChainNamePatternMismatch(chain_name.to_string()))
70 }

71 1

72}

Figure 4: packages/connection-router-api/src/primitives.rs

12 pub enum ChainName {

13 Ethereum,

14 #[serde(untagged)]

15 Other(String),

16}

17

18 1impl PartialEg<connection_router::state::ChainName> for ChainName {

19 fn eq(&self, other: &connection router::state::ChainName) -> bool {
20 self.to_string().eq_1ignore_ascii_case(other.as_ref())

21 }

22}

Figure 5: ampd/src/evm/mod.rs

These three implementations all use different rules for filtering invalid chain names and for
normalizing the provided strings.

For instance, the ChainName implementation in connection-router rejects all chain names
containing the character “”, the ChainName implementation in connection-router-api rejects
all chain names that do not satisfy the CHAIN_NAME_REGEX: &str = "~[A-Z]?[a-z]+(-2[0-9]+)?
$"; , which matches any string of lowercase letters (first letter may be uppercase),
potentially followed by a number or a dash and a number. Finally, the ChainName enum in

evm does not perform any filtering on the provided string.

Additionally, the connection-router implementation converts strings to lowercase prior to
saving, while the connection-router-api implementation only converts to lowercase in the
implementation for equality testing. Similarly, the ChainName enum in evm does no
normalization on strings, although it does ignore case when comparing with ChainName
objects from connection-router. Note that the evm ChainName enum does not implement an
equality function against itself, so two evm ChainName objects that are both equivalent to a
connection-router ChainName object may not be considered equal to each other, as can be
seen in the test below.

The existence of multiple ChainName implementations may cause confusion for developers
on the codebase that are not familiar with the different objects and the differences between
them. Additionally, the slight differences in behaviour between them may cause differences
in behaviour of the system for some particular chains, which may not be desirable.

Finally, note that the normalization functions used for all three ChainName implementations,
to_lowercase and eq_ignore_ascii_case, may not be sufficient if a unicode chain name is
passed in. For example, there are a number of characters that have multiple valid unicode
encodings, such as the A (a-acute) glyph which can be encoded as a single character
U+00C1 (the “composed” form), or as two separate characters U+0041 then U+0301 (the

12 / 25 - Finding Details % Client Confidential

“decomposed” form), and hence identical strings may be detected as being different.
Normalization is the process of standardizing string representation such that if two strings
are canonically equivalent and are normalized to the same normal form, their byte
representations will be the same, and is the recommended approach for unicode string
comparisons.

Recommendation

Consider consolidating the existing ChainName implementations, aligning their various
implementations, or clearly documenting the differences between them and expected use-
cases.

Additionally, determine whether unicode chain names are expected within the system, and
consider either enforcing that unicode chain names are not allowed, or using a unicode-
friendly normalization method for comparisons instead.

Reproduction Steps

The following test, adapted from the existing test in hilter-amplifier/ampd/src/evm/mod.rs
will fail, as two enum ChainNum objects from evm that are both equivalent to a connection-
router ChainName object may not be considered equal to each other:

use crate::evm;

use connection router::state::ChainName;
use std::str::FromStr;

use crate::handlers::config::Chain;

Ly
#[test]
fn chain_name_partial_eq() {
Ly
assert_eq! (evm: :ChainName: :0ther("Fantom".to_string()),
ChainName::from_str("fantom").unwrap());
assert_eq! (evm: :ChainName: :0ther("fantom".to_string()),
ChainName::from_str("fantom").unwrap());
lassert_eq!(evm::ChainName: :0ther("Fantom".to_string()), evm::ChainName::0ther("fantom".
to strin 8
Location

« hilter-amplifier/contracts/connection-router/src/state.rs
« hilter-amplifier/packages/connection-router-api/src/primitives.rs
« hilter-amplifier/ampd/src/evm/mod.rs

Retest Results

2025-06-18 — Partially Fixed

The repository has been refactored to only have a single ChainName struct, in the connection
-router-api. As part of this refactoring, the ChainName enum in ampd has been repurposed
and renamed, to denote the type of finalizer for each chain instead.

However, note that no update to unicode-friendly normalization methods or unicode filtering
has been observed within the above commits. As such, this finding is considered partially
fixed.

1. https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/

13/ 25 - Finding Details % Client Confidential

Client Response

The refactoring of the connection router has been completed, so there is only a single
ChainName struct in the connection-router-api. Furthermore, the ChainName in ampd has
been repurposed and renamed to only denote the type of finalizer to use for each chain.

14 / 25 - Finding Details % Client Confidential

nfo Open TODO Regarding Worker Set
Confirmation Nonce Validation

Overall Risk Informational FindingID NCC-E010021-LXC
Impact Undetermined Component hilter-amplifier
Exploitability Undetermined Category Cryptography

Status Partially Fixed

Description
This finding details a security issue/TODO in the reviewed code that was already known and
documented by Hilter.

The Multisig contract defines a WorkerSet, which describes a list of signers and the
threshold of signatures required from the workers to proceed.

10 pub struct WorkerSet {

11 // An ordered map with the signer's address as the key, and the signer as the value.
12 pub signers: BTreeMap<String, Signer>,
13 pub threshold: Uint256,
14 // for hash uniqueness. The same exact worker set could be in use at two different
L times,
15 // and we need to be able to distinguish between the two
16 [pub created at: u64,
17 |// T0DO: add nonce to the voting verifier and to the evm gateway.|
18 // Without a nonce, updating to a worker set that is the exact same as a worker set in

L the past will be immediately confirmed.

19 }
Ly

Figure 6: contracts/multisig/src/worker_set.rs

In order to distinguish between a WorkerSet at two different points in time, the current block
height is included as created_at in the WorkerSet. However, this value is not currently
leveraged by the necessary contracts that process the WorkerSet. This issue was identified
internally by Hilter during their own QA, as documented in PR #70.

Recommendation
Add the missing freshness checks to the other components of the worker set confirmation
flow.

Location
hilter-amplifier/contracts/multisig/src/worker_set.rs

15 / 25 - Finding Details % Client Confidential

Retest Results

2025-06-18 — Not Fixed

The Hilter team indicated that this TODO cannot yet be addressed due to changes being
required to contracts on external chains first, but that it will be remediated as soon as
possible.

Client Response

This is still an open task, because we are blocked by necessary changes to gateway
contracts on external chains. As soon as these contracts can deal with an additional nonce
we will add it on the amplifier side.

16 / 25 - Finding Details % Client Confidential

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

17 / 25 - Finding Field Definitions % Client Confidential

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name

Description

Access Controls
Auditing and Logging
Authentication
Configuration

Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Timing

Related to authorization of users, and assessment of rights.
Related to auditing of actions, or logging of problems.
Related to the identification of users.

Related to security configurations of servers, devices, or
software.

Related to mathematical protections for data.

Related to unintended exposure of sensitive information.
Related to improper reliance on the structure or values of data.
Related to causing system failure.

Related to the reporting of error conditions in a secure fashion.
Related to keeping software up to date.

Related to the identification of authenticated users.

Related to race conditions, locking, or order of operations.

18 / 25 - Finding Field Definitions %

Client Confidential

6 Engagement Notes

This section documents comments and observations made during the review that are not
security-related or did not warrant standalone findings, but which may nevertheless be of
interest to the Hilter team.

Checked vs. Unchecked Arithmetic

Rust provides several options for safe arithmetic operations, allowing developers to specify
checked, wrapping, or saturating operations. In a debug build, arithmetic operations default
to their checked versions, where a panic occurs if an operation overflows. In a release build,
overflowing arithmetic operations default to their wrapping versions. In general, and
particularly in security-sensitive code, it is good practice to explicitly specify which version
of an operation should be used. Even if overflow is unlikely to occur with expected inputs,
future changes to the code or malicious input may be able to force unintended behavior. For
example, the following code tracks the gas cost for a set of messages in a queue:

9 1impl MsgQueue {

10 pub fn push(&mut self, msg: Any, gas_cost: Gas) {
11 self.msgs.push(msg);

12 self.gas_cost += gas_cost;

13 1

Figure 7: ampd/src/queue/msg_queue.rs

Similarly, the following code performs checks against the batch_gas_limit:

123 if fee.gas_limit + queue.gas_cost() >= self.batch_gas_limit {
124 interval.reset();

125 broadcast_all(&mut queue, &mut broadcaster).await?;

126 }

Figure 8: ampd/src/queue/queued_broadcaster.rs

Here, the various cost and limit values are u64 values and will therefore use wrapping
arithmetic operations by default in release. While there may be no envisioned scenario in
which these values can overflow, it could be considered a defense-in-depth measure to use
saturating addition, such that the result of summing gas costs will never wrap around to O.

Another example can be found in the distribute_rewards() function:

132 let to = std::cmp::min(

133 [(from + epoch process_limit).saturating sub(1)|, // for process limit =1 "from"
L and "to" must be equal

134 cur_epoch.epoch_num.saturating_sub(EPOCH_PAYOUT_DELAY),

135);

136

137 if to < from || cur_epoch.epoch_num < EPOCH_PAYOUT_DELAY {

138 return Err(ContractError::NoRewardsToDistribute.into());

139 }

Figure 9: contracts/rewards/src/contract/execute.rs

In this case, the from + epoch_process_limit addition will use wrapping arithmetic
operations by default in release. This may cause an error to be returned on line 138 if the
input parameter epoch_process_limit is large enough that the addition from +
epoch_process_limit wraps, and is at odds with the saturating_sub used immediately
afterwards. While there does not appear to be a scenario in which this unchecked addition
will cause issues beyond hindering the execution of the call to distribute_rewards() itself, it
may be more intuitive to replace the + with a call to saturating_add.

19 / 25 - Engagement Notes % Client Confidential

Note that other areas of the code utilize the cosmwasm_std::Uint256 type, which explicitly
utilizes checked addition:

427 impl Add<Uint256> for Uint256 {

428 type Output = Self;

429

430 fn add(self, rhs: Self) -> Self {
431 Self(

432 self.0

433 .checked_add(rhs.0)
434 .expect("attempt to add with overflow"),
435)

436 }

437 1}

Figure 10: cosmwasm-std-1.4.0/src/math/uint256.rs

There are a few structures/traits in the code that implement arithmetic operations as well,
such as Pollld and FiniteAmount. These default to wrapping operations and should be
reviewed for safety with respect to this default behavior.

Potentially Unsafe / Diverging Behavior in Signature Verification

A minor deviation in behavior between the code paths for secp256k1 and ed25519 signature
verification was observed. In all current uses the implementation appears safe, but the
divergence may represent a potential implicit assumption in the current approach that may
not hold for all future use cases.

The library supports both secp256k1 and ed25519 signatures, both encapsulated in a
Signature that provides a verify() function which calls the appropriate curve-specific
verify function. However, it was noted that the two verification functions accept slightly
different data types, with one consuming a Signature and the other a &[u8] array, although
both versions ultimately operate on &[u8] arrays when calling the supporting library:

179 match self.key_ type() {
180 KeyType::Ecdsa => ecdsa_verify(msg.as_ref(), , pub_key.as_ref()),
181 KeyType: :Ed25519 => ed25519_verify(msg.as_ref(), |self.as_ref(),

- pub_key.as_ref()),
182 }

Figure 11: contracts/multisig/src/key.rs

It also appears that the resulting arrays passed in here should be of the correct length for
the associated algorithm. Therefore, reviewed usage of the functions should be safe and
behave as expected.

7 pub fn ecdsa_verify(

8 msg_hash: &[u8],

9 sig: &Signature,

10 pub_key: &[u8],

11) -> Result<bool, ContractError> {

12 secp256k1_verify(msg_hash, sig.as_ref(), pub_key).map_err(|err| {
13 ContractError::SignatureVerificationFailed {

20/ 25 - Engagement Notes % Client Confidential

14 reason: err.to_string(),
15 1

16 b
17}

Figure 12: contracts/multisig/src/secp256k1.rs

This function calls through to secp256ki_verify() using the provided signature which will
panic if the length is invalid. Compare this with the ed25519 version, which performs a
truncation of the input to the expected length:

3 const ED25519_SIGNATURE_LEN: usize = 64;

4

5 pub fn ed25519 verify(msg_hash: &[u8], sig: &[u8], pub_key: &[u8]) -> Result<bool,
- ContractError> {

6 cosmwasm_crypto::ed25519_verify(msg_hash, [&sig[0..ED25519 SIGNATURE_LENT,|
5 pub_key) .map_err(

7 |e| ContractError::SignatureVerificationFailed {

8 reason: e.to_string(),

9 1.

10)

11}

Figure 13: contracts/multisig/src/ed25519.rs

This function only passes 64 bytes through to ed25519_verify(), silently truncating the
input, or panicking on less than 64 bytes of input. Extraneous data appended to the input
buffer will be ignored, which may be seen as undesirable or unexpected behavior in many
contexts. This does not represent an exploitable issue or security concern within the current
use cases but may represent a potential future vulnerability if the function is used
elsewhere.

Unnecessary Complexity In verify() Implementation

The verify() function for the Signature class provides a wrapper around the
ed25519_verify() and the secp256ki_verify() functions from the cosmwasm-crypto crate. As
such, it returns a Result<bool, ContractError>, corresponding exactly to the returned values
from the underlying crate:

169 impl Signature {

170 pub fn verify<T: AsRef<[u8]>>(

171 &self,

172 msg: T,

173 pub_key: &PublicKey,

174) -> Result<bool, ContractError> {

175 if !self.matches_type(pub_key) {

176 return Err(ContractError::KeyTypeMismatch);
177 }

178

179 match self.key type() {

180 KeyType::Ecdsa => ecdsa_verify(msg.as_ref(), self, pub_key.as ref()),

21/ 25 - Engagement Notes % Client Confidential

181 KeyType::Ed25519 => ed25519 verify(msg.as_ref(), self.as_ref(),
“ pub_key.as_ref()),

182 }

183 }

184 }

Figure 14: contracts/multisig/src/key.rs

The underlying functions in the cosmwasm-crypto crate generally return an error if the
signature verification fails during parsing, and a value of False if the signature parses
correctly but does not verify, both of which should be considered as denoting invalid
signatures. As such, both usages of verify() in the codebase treat a returned value of
False and an Error in the same way, returning an Error up the calling stack:

130 if !signed_sender_address.verify(address_hash.as_slice(), &public_key)? {
131 return Err(ContractError::InvalidPublicKeyRegistrationSignature);
132}

Figure 15: contracts/multisig/src/contract/execute.rs

Consider moving this handling of returned values into the verify() function, by having it
return an Error on returned value False as well. This would simplify calls to it, and prevent
potential accidental missed checks by callers of the verify() function in the future.

Additionally, note that the Error returned value path of the verify() function is not
currently exercised by the tests in contracts/multisig/src/key.rs. Consider adding a test to
ensure this code path is covered by adding tests for rejecting invalid signatures that cause
the verify() function to return an error. An example that would trigger the error is an out-
of-bounds signature such as the all-zero signature "00000000000000000000000000000000000000
00
00" for secp256Kk1.

Discrepancy Between Rewards and Signing Weights Implementations

In the current set-up for the Signing contract, each participant has an individual weight
defined, and participants with a higher weight contribute more towards the signing
threshold needed to finalize a multi-signature. On the other hand, the rewards computation
is currently based on the number of events a worker has participated in (subject to a
minimum threshold), and thus is entirely independent of the weight contributed by each
individual during signing. In the current code, all signer weights are set to 1, matching the
rewards distribution. Additionally, the Hilter team noted that they do not expect the weights
to change for the time being, and that future signing weight changes may not be strictly
reflected on the rewards side.

However, note that implementing variable weights only for the Signing contract and not for
the Rewards contract may restrict the usefulness of the variable weights implementation for
the Signing contract, as any signing weights distribution that would require an update to the
rewards distribution will necessitate development effort to update the Rewards contract.

22 [/ 25 - Engagement Notes % Client Confidential

Documentation Comments

Governance Operations

Several operations in the hilter-amplifier interface are restricted to authorized callers, such
as the governance address, which can be used to add/remove support for external chains,
or to alter the rewards mechanisms. The documentation for the Service Registry contract,

for example, includes such details in the interface documentation:

23 // Authorizes workers to join a service. [Can only be called by governance account.|
> Workers must still bond sufficient stake to participate.

24 AuthorizeWorkers {

25 workers: Vec<String>,

26 service_name: String,

27 1,

Figure 16: doc/src/contracts/service_registry.md

It was noted that the Multisig contract similarly requires governance authorization for
AuthorizeCaller and UnauthorizeCaller, but this is hot mentioned in the written
documentation nor within the interface specification. It may be beneficial to developers to
revise the interface specification here to include annotations consistent with the other
contracts and to make the calling requirements explicit.

Default Epoch Count During Rewards Distribution
The documentation for the Rewards contract specifies the behavior of the
DistributeRewards function as follows:

25 Calling ‘DistributeRewards’ distributes rewards for the epoch two epochs prior to the
current epoch,
26 (so if we are in epoch 2, we distribute rewards for epoch 0).

»

Figure 17: doc/src/contracts/rewards.md

This is further clarified in the interface documentation:

25 /// Distribute rewards up to epoch T - 2 (i.e. if we are currently in epoch 10, distribute
all undistributed rewards for epochs 0-8) and send the required number of tokens to each
“worker
Ly

26 DistributeRewards {

27 /// Address of contract for which to process rewards. For example, address of a voting
- verifier instance.

28 contract_address: String,

29 /// Maximum number of historical epochs for which to distribute rewards, starting with
- the oldest.

30 epoch_count: Option<u64>,

31 1,

Figure 18: contracts/rewards/src/msqg.rs

However, this documentation does not make it clear what the default behaviour for
DistributeRewards is, if the epoch_count is left unspecified. In particular, this default is set to
10 epochs, which differs from both the single epoch implied by the contract documentation,
and the maximum possible number of epochs, as implied by the interface documentation.

23/ 25 - Engagement Notes % Client Confidential

Typographical Errors
» Verfier graph -> Verifier graph in doc/src/contracts/voting_verifier.md
» packges/signature-verifier-api -> packages/signature-verifier-api, observed in doc/
src/contracts/multisig.md at a later commit during the engagement

24 |/ 25 - Engagement Notes % Client Confidential

7 Contact Info

The team from NCC Group has the following primary members:

» Kevin Henry — Consultant
 Elena Bakos Lang — Consultant
« Javed Samuel - Practice Director, Cryptography Services

25/ 25 - Contact Info % Client Confidential

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Vulnerable and Outdated Dependencies
	Insufficient Duplicate Public Key Detection
	Multiple ChainName Implementations May Cause Issues or Confusion
	Open TODO Regarding Worker Set Confirmation Nonce Validation

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	Contact Info

