

Company Address

Cross-Chain Gateway

Protocol (CGP)

Security Assessment Report

August , 2025

Version 1.1

CONFIDENTIAL

Hilter

3

2 | P a g e

Table of Contents

Table of Contents .. 2

1 Executive Summary ... 5

1.1 Introduction ... 5

1.2 Assessment Results .. 6

1.2.1 Retesting Results ... 7

1.3 Summary of Findings .. 8

2 Assessment Description ... 11

2.1 Target Description .. 11

2.2 In-Scope Components .. 11

3 Methodology .. 12

3.1 Assessment Methodology .. 12

3.2 Smart Contracts .. 12

4 Scoring System .. 14

4.1 CVSS ... 14

5 Identified Findings ... 15

5.1 Medium Severity Findings .. 15

5.1.1 No upper bound in one operator's weight at

"HilterAuthWeighted.sol .. 15

5.1.2 No lower bound in threshold at "HilterAuthWeighted.sol" 16

5.1.3 Excessive loop iterations allowed in "setTokenDailyMintLimits" at

"HilterGateway.sol" .. 17

5.2 Low Severity Findings ...19

5.2.1 Event not emitted in "burnToken" functionality at

"HilterGateway.sol" ..19

5.2.2 Event not emitted in "mintToken" functionality at

"HilterGateway.sol" .. 24

3 | P a g e

5.2.3 Event not emitted in self functionality "collectFees()" at

"HilterGasService.sol" ..29

5.2.4 Event not emitted in self functionality "refund()" at

"HilterGasService.sol" .. 32

5.2.5 Insecure error handling of zero addresses at

"ReceiverImplementation.sol" and at "DepositReceiver.sol" 35

5.2.6 Lack of circuit breaker for emergency stop at

"HilterDepositService" ...37

5.2.7 Lack of circuit breaker for emergency stop at "HilterGateway" 39

5.2.8 Unvalidated amount in "_mintToken" at "HilterGateway.sol" 41

5.2.9 Unvalidated amount in "burn" and "burnFrom" at

"BurnableMintableCappedERC20.sol".. 43

5.2.10 Unvalidated amount in "refund" at "HilterGasService.sol" 46

5.2.11 No multisig protection in "util/upgradable.sol"............................48

5.2.12 Unvalidated amount in "payGasForContractCall()",

"payGasForContractCallWithToken()", and the "addGas()" functions at

"HilterGasService.sol" .. 50

5.2.13 Unvalidated amount in "collectfees" at "HilterGasService.sol" 54

5.2.14 Unvalidated address "receiver" in "collectFees" at

"HilterGasService.sol" ..57

5.2.15 Unvalidated address "receiver" in "refund" at

"HilterGasService.sol" ..59

5.2.16 Unvalidated address "recipient" in "withdrawNative" at

"HilterDepositService.sol" ... 61

 5.3 Informational Finding s...63

5.3.1 Ownership can be transferred to same owner at "Ownable.sol"

63

5.3.2 Lack of circuit breaker for emergency stop at "HilterGasService"

65

5 .3 .3 Excessive loop iterations allowed in "setAdmins " at "

AdminMultisigBase.sol" ..67

4 | P a g e

5.3.4 Excessive loop iterations allowed in "admins" at

"HilterGateway.sol" ..69

5.3.5 Excessive loop iterations allowed in "collectFees" at

"HilterGasService.sol" ..73

5.3.6 Excessive loop iterations allowed in "execute" at

"HilterGateway.sol" .. 75

5.3.7 No reentrancy protection in "execute" at "DepositReceiver .sol"7 7

5.3.8 Floating pragma in multiple interfaces at "contracts /interfaces /"

folder ..78

5.3.9 Setup functionality can be circumvented during contract upgrade

at "/contracts/util/Upgradable.sol" ...80

6 Retest Results ... 81

6.1 Retest of Medium Severity Findings ..81

6.2 Retest of Low Severity Findings ..81

6.3 Retest of Informational Findings ..81

References & Applicable Documents ...82

Document History ..82

5 | P a g e

1 Executive Summary

1.1 Introduction

The report contains the results of Hilter Cross-Chain Gateway Protocol security

assessment that took place from June 20th, 2025, to July 12 , 2025 and from

July 15 , 2025 to July 17, 2025. The security engineers performed an in-

depth manual analysis of the provided functionalities, and uncovered issues that

may be used by adversaries to affect the confidentiality, the integrity, and the

availability of the in-scope components.

All the identified vulnerabilities are presented in the report, including their impact

and the proposed mitigation strategy, and are ordered by their severity.

In total, the team identified nineteen (19) vulnerabilities. There were also nine (9)

informational issues of no-risk.

All the identified vulnerabilities are presented in the report, including their impact

and the proposed mitigation strategy, and are ordered by their severity. A

retesting phase was carried out on August 2nd, 2025, and the results are

presented in Section 6.

0 2 4 6 8 10 12 14 16 18

HIGH

MEDIUM

LOW

INFO

Total Findings

th

th th

6 | P a g e

1.2 Assessment Results

The assessment results revealed that the in-scope application components were

mainly vulnerable to three (3) Data Validation issues of MEDIUM risk . More

precisely , it was identified that the"_transferOwnership " functionality does not

impose an upper bound for the assigned weights on the selected operators (‘5.1.

1

-

No upper bound in one operator 's weight at "HilterAuthWeighted .sol”’), allowing

values that can be excessive or even more than the assigned threshold . The

team also identified that the "_transferOwnership" functionality

does not enforce

a lower bound for the selected new threshold (‘5.1.2

-

No lower bound in threshold

at " AuthWeighted .sol "‘), permitting values that can be lower

than the

maximum weight that has been selected

for one of the operators.

Furthermore , it was found that the function which is used by administrators to

set the token’s limits, contains a potentially costly loop

that makes the function

inefficient for using it in emergency cases

(‘5.1.3

-

Excessive loop iterations allowed

in "setTokenDailyMintLimits " at " Gateway .sol"’). If the admins provide a

significantly large array of tokens symbols,

it is possible that the function will not

be fully executed neither in the current nor in the following blocks.

There were also fifteen (15) vulnerabilities of LOW risk and seven (7) findings of

no-risk (INFORMATIONAL). Regarding the Administration

issues of LOW risk, it

was found that many admin functionalities do not emit the appropriate event

when the native token is selected

(‘5.2.3

-

Event not emitted in self functionality "

collectFees()" at " GasService.sol"’, ‘5.2.4

-

Event not emitted in self functionality "

refund ()" at " GasService .sol"’), potentially

affecting the credibility and

the

confidence in the system.

A similar issue occurs when an ERC20 token is used (‘5.

2.1

-

Event not emitted in "burnToken " functionality at " Gateway .sol"’, ‘5.2.2

-

Event not emitted in "mintToken" functionality at " Gateway.sol"’), even though

fully compliant ERC20 tokens should typically emit a

related

event.

In reference to

the Access Control

LOW-risk issues, it was found that the contracts do not have a

dedicated circuit breaker control that can be used in case of emergency to pause

the transactions (‘5.2.6

-

Lack of circuit breaker for emergency stop at

" DepositService"’, ‘5.2.7

-

Lack of circuit breaker for emergency stop at

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

7 | P a g e

" Gateway"’). There is only one control based on the token limits that might

not be effective as described in finding 5.1.3.

In reference to the LOW-risk Authentication issues, it was found that the admin

functions of one contract that provides an upgrade mechanism is not protected

with multisig (‘5.2.11 - No multisig protection in "util/upgradable .sol"’), allowing

adversaries who have access to the admin’s private key to fully compromise the

related contracts. Regarding the Data Validation issues of LOW risk, it was found

that many external functionalities do not validate if the address of the receiver is

zero (‘5.2.14 - Unvalidated address "receiver" in "collectFees" at " GasService.sol"’

‘5.2.15 - Unvalidated address "receiver" in "refund" at " GasService.sol"’, ‘5.2.16 -

Unvalidated address "recipient" in "withdrawNative" at " DepositService .sol"’) or

if the provided amount is zero (‘5.2.8 - Unvalidated amount in "_mintToken " at "

Gateway .sol"’, ‘5.2.9 - Unvalidated amount in "burn" and "burnFrom " at "

BurnableMintableCappedERC 20.sol"’ ‘5.2.10 - Unvalidated amount in "refund" at "

GasService .sol"’, ‘5.2.12 - Unvalidated amount in "payGasForContractCall ()", "

payGasForContractCallWithToken ()", and the "addGas ()" functions at "

GasService .sol"’, ‘5.2.13 - Unvalidated amount in "collectfees " at " GasService .

sol "’), facilitating user mistakes that could accidentally burn tokens , or

consume unnecessary gas, while emitting confusing events for front- end dapps.

 Moreover , it was found that many functionalities of the Deposit Service replace

the receiving address with the "msg.sender" when the provided address is zero

(‘5.2.5 - Insecure error handling of zero addresses at "ReceiverImplementation .sol"

and at "DepositReceiver.sol"’).

1.2.1

Retesting Results

Results from retesting carried out on August 2025 , determined that four (4)

reported LOW-risk issues (see sections 5.2.13, 5.2.14, 5.2.15, 5.2.16) and one (1)

INFORMATIONAL issue

(see sections 5.3.7)

were sufficiently addressed (5 out of

28 findings).

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

8 | P a g e

1.3 Summary of Findings

The following findings were identified in the examined source code:

Vulnerability Name Status
Retest

Status
Page

No upper bound in one operator's weight at

"HilterAuthWeighted.sol"
N/A MEDIUM 15

No lower bound in threshold at

" AuthWeighted.sol"
N/A MEDIUM 17

Excessive loop iterations allowed in

"setTokenDailyMintLimits" at “ Gateway.sol"
MEDIUM MEDIUM 19

Event not emitted in "burnToken" functionality at

" Gateway.sol"
LOW LOW 22

Event not emitted in "mintToken" functionality at

" Gateway.sol"
LOW LOW 27

Event not emitted in self functionality "collectFees()" at

" GasService.sol"
LOW LOW 33

Event not emitted in self functionality "refund()" at

" GasService.sol"
LOW LOW 36

Insecure error handling of zero addresses at

"ReceiverImplementation.sol" and at

"DepositReceiver.sol"

N/A LOW 39

Lack of circuit breaker for emergency stop at

" DepositService"
LOW LOW 41

Lack of circuit breaker for emergency stop at

" Gateway"
LOW LOW 43

Unvalidated amount in "_mintToken" at

" Gateway.sol"
LOW LOW 46

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

9 | P a g e

Unvalidated amount in "burn" and "burnFrom" at

“BurnableMintableCappedERC20.sol"
LOW LOW 49

Unvalidated amount in "refund" at

" rGasService.sol"
LOW LOW 52

No multisig protection in "util/upgradable.sol" LOW LOW 54

Unvalidated amount in "payGasForContractCall()",

"payGasForContractCallWithToken()", and the

"addGas()" functions at " GasService.sol"

LOW LOW 57

Unvalidated amount in "collectfees" at

" GasService.sol"
LOW CLOSED 61

Unvalidated address "receiver" in "collectFees" at

" GasService.sol"
LOW CLOSED 64

Unvalidated address "receiver" in "refund" at

" GasService.sol"
LOW CLOSED 66

Unvalidated address "recipient" in "withdrawNative" at

" DepositService.sol"
LOW CLOSED 68

Ownership can be transferred to same owner at

"Ownable.sol"
INFO INFO 71

Lack of circuit breaker for emergency stop at

" GasService"
INFO INFO 73

Excessive loop iterations allowed in "setAdmins" at

"AdminMultisigBase.sol"
INFO INFO 75

Excessive loop iterations allowed in "admins" at

" Gateway.sol"
INFO INFO 78

Excessive loop iterations allowed in "collectFees" at

" GasService.sol"
INFO INFO 82

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

Hilter

10 | P a g e

Excessive loop iterations allowed in "execute" at

“ Gateway.sol"
INFO INFO 85

No reentrancy protection in "execute" at

"DepositReceiver.sol"
INFO CLOSED 87

Floating pragma in multiple interfaces at

"contracts/interfaces/" folder
N/A INFO 89

Setup functionality can be circumvented during

contract upgrade at "/contracts/util/Upgradable.sol"
N/A INFO 91

Hilter

11 | P a g e

2 Assessment Description

2.1 Target Description

Hilter network's decentralized validators confirm events emitted on EVM chains

(such as deposit confirmation) and

sign off on commands submitted (by

 automated services) to the gateway smart contracts (such as minting token,

and approving message on the destination).

2.2

In-Scope Components

The components are located at the following URL:

https://gitlab.com/hilterltd-group/hilter-cgp-solidity

Component Commit Identifier

hilter-cgp-solidity 02dfea2e43b5d20af4c7bb0f6a2e7b045f

2ad8bc

hilter-cgp-solidity (v4.3.0) – Retest

Version

5614e209441c2f4e1b905e2746c94af206

7169bc

12 | P a g e

3 Methodology

3.1 Assessment Methodology

Chaintroopers’ methodology attempts to bridge the penetration testing and

source code reviewing approaches in order to maximize the effectiveness of a

security assessment.

Traditional pentesting or source code review can be done individually and can

yield great results, but their effectiveness cannot be compared when both

techniques are used in conjunction.

In our approach, the application is stress tested in all viable scenarios though

utilizing penetration testing techniques with the intention to uncover as many

vulnerabilities as possible. This is further enhanced by reviewing the source code

in parallel to optimize this process.

When feasible our testing methodology embraces the Test-Driven Development

process where our team develops security tests for faster identification and

reproducibility of security vulnerabilities. In addition, this allows for easier

understanding and mitigation by development teams.

Chaintroopers’ security assessments are aligned with OWASP TOP10 and NIST

guidance.

This approach, by bridging penetration testing and code review while bringing the

security assessment in a format closer to engineering teams has proven to be

highly effective not only in the identification of security vulnerabilities but also in

their mitigation and this is what makes Chaintroopers’ methodology so unique.

3.2 Smart Contracts

The testing methodology used is based on the empirical study “Defining Smart

Contract Defects on Ethereum” by J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo and T.

Chen, in IEEE Transactions on Software Engineering, and the security best

practices as described in “Security Considerations” section of the solidity wiki.

13 | P a g e

The following is a non-exhaustive list of security vulnerabilities that are identified

by our methodology during the examination of the in-scope contract:

▪ Unchecked External Calls

▪ Strict Balance Equality

▪ Transaction State Dependency

▪ Hard Code Address

▪ Nested Call

▪ Unspecified Compiler Version

▪ Unused Statement

▪ Missing Return Statement

▪ Missing Reminder

▪ High Gas Consumption Function Type

▪ DoS Under External Influence

▪ Unmatched Type Assignment

▪ Re-entrancy

▪ Block Info Dependency

▪ Deprecated APIs

▪ Misleading Data Location

▪ Unmatched ERC-20 standard

▪ Missing Interrupter

▪ Greedy Contract

▪ High Gas Consumption Data Type

 In Substrate Pallets, the list of vulnerabilities that are identified also includes:

▪ Static or Erroneously Calculated Weights

▪ Arithmetic Overflows

▪ Unvalidated Inputs

▪ Runtime Panic Conditions

▪ Missing Storage Deposit Charges

▪ Non-Transactional Dispatch Functions

▪ Unhandled Errors &Unclear Return Types

▪ Missing Origin Authorization Checks

14 | P a g e

4 Scoring System

4.1 CVSS

All issues identified as a result of Chaintroopers’ security assessments are

evaluated based on Common Vulnerability Scoring System version 3.1.

With the use of CVSS, taking into account a variety of factors a final score is

produced ranging from 0 up to 10. The higher the number goes the more critical

an issue is.

The following table helps provide a qualitative severity rating:

Rating CVSS Score

None/Informational 0.0

Low 0.1-3.9

Medium 4.0-6.9

High 7.0-8.9

Critical 9.0-10.0

Issues reported in this document contain a CVSS Score section, this code is

provided as an aid to help verify the logic of the team behind the evaluation of a

said issue.

15 | P a g e

5 Identified Findings

5.1 Medium Severity Findings

5.1.1 No upper bound in one operator's weight at "HilterAuthWeighted.sol

Description

The team identified that no upper bound is set for the provided weight for an

operator at the "_transferOwnership" functionality. In general, the auth

contract verifies that the received commands are signed by a weighted set of

operator keys. It also performs transfers of operatorships (to mimic changes

to the validator set of Hilter Proof-of-Stake network). However, it was found

that the transfers of operatorships do not validate if the weight of an

operator is excessive or even more than the required newThreshold.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/auth/HilterAuthWeighted.sol

70: uint256 totalWeight = 0;

71: for (uint256 i = 0; i < weightsLength; ++i) {

72: totalWeight += newWeights[i];

73: }

74: ...

Recommendation

It is recommended to validate that the weight of each operator does not

exceed an accepted fraction of the newThreshold.

MEDIUM

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/M

UI:X/MS:X/MC:X/MI:X/MA:X

CVSS Score

16 | P a g e

5.1.2 No lower bound in threshold at "H AuthWeighted.sol"

Description

The team identified that no lower bound is set for the provided new threshold

for a set of operators at the "_transferOwnership" functionality. In general, the

auth contract verifies that the received commands are signed by a weighted

set of operator keys. It also performs transfers of operatorships (to mimic

changes to the validator set of Hilter Proof -of-Stake network). However , it

was found that the transfers of operatorships do not validate if the required

newThreshold is at least greater than the maximum weight that has been

provided for one of the operators . For example , it is possible to provide a

newThreshold that will be just 1, allowing any operator with weight greater

than 0 to execute arbitrary commands and compromise the gateway.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/auth/HilterAuthWeighted.sol

70: uint256 totalWeight = 0;

71: for (uint256 i = 0; i < weightsLength; ++i) {

72: totalWeight += newWeights[i];

73: }

74: if (newThreshold == 0 || totalWeight < newThreshold) revert

InvalidThreshold();

75:

Recommendation

It is recommended to validate that the newThresold

is at least greater than the

maximum weight that has been provided for one of the operators.

MEDIUM

ilter

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/M

UI:X/MS:X/MC:X/MI:X/MA:X

17 | P a g e

5.1.3 Excessive loop iterations allowed in "setTokenDailyMintLimits" at

"HilterGateway.sol"

Description

It was identified that the external function "setTokenDailyMintLimits", which

can be called only by administrators, contains a potentially costly loop.

Computational power on blockchain environments is paid, thus reducing the

computational steps required to complete an operation is not only a matter

of optimization but also cost efficiency. Loops are a great example of costly

operations: as many elements an array has, more iterations will be required

to complete the loop.

Excessive loop iterations exhaust all available gas.

 In the specific case, the function "setTokenDailyMintLimits" iterates over the

arrays "symbols" and "limits" which are provided as arguments and are of

unspecified length:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

204: function setTokenDailyMintLimits(string[] calldata symbols,

uint256[] calldata limits) external override onlyAdmin {

205: if (symbols.length != limits.length) revert

InvalidSetDailyMintLimitsParams();

206:

207: for (uint256 i = 0; i < symbols.length; i++) {

208: string memory symbol = symbols[i];

209: uint256 limit = limits[i];

210:

211: if (tokenAddresses(symbol) == address(0)) revert

TokenDoesNotExist(symbol);

212:

213: _setTokenDailyMintLimit(symbol, limit);

214: }

215: }

MEDIUM

18 | P a g e

In case that the Administrator decides to apply specific limits to a large array

of symbols, it is possible that the operation will fail due to the max gas

consumption on the current block. A failed change in the limits will allow

adversaries who monitor the transactions to identify the requested action and

use front running to circumvent the limitation before it is applied in the

following blocks. Furthermore, the Administrator will have to submit the

action in smaller batches to be able to execute it, allowing the adversaries to

still circumvent the limits in the remaining symbols.

Recommendation

If it is necessary to loop over an array of unknown size, the function should

be able to execute the operation in multiple blocks and in multiple

transactions . In that case, it will be required to maintain the extra state of

how many iterations have already been performed to continue from that

point in the next function

call.

In case that there is no requirement to loop

over an array of unknown size, it is advisable to modify the functionality to

always verify that the provided symbols array does not exceed an upper limit

to prevent a failure in the update operation.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L/E:F/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MUI

:X/MS:X/MC:X/MI:X/MA:X

19 | P a g e

5.2 Low Severity Findings

5.2.1 Event not emitted in "burnToken" functionality at "HilterGateway.sol"

Description

It was identified that the admin command "burnToken" does not emit an event

with the exact amount when an external token is used. A contract can emit

events when it wants to notify external entities like users, chain explorers, or

dApps about changes or conditions in the blockchain. When an event is emitted,

it stores the arguments passed in transaction logs. These logs are stored on

blockchain and are accessible using address of the contract till the contract is

present on the blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

373: function burnToken(bytes calldata params, bytes32) external

onlySelf {

374: (string memory symbol, bytes32 salt) = abi.decode(params,

(string, bytes32));

375:

376: address tokenAddress = tokenAddresses(symbol);

377:

378: if (tokenAddress == address(0)) revert

TokenDoesNotExist(symbol);

379:

380: if (_getTokenType(symbol) == TokenType.External) {

381: DepositHandler depositHandler = new DepositHandler{ salt:

salt }();

382:

383: (bool success, bytes memory returnData) =

depositHandler.execute(

384: tokenAddress,

385: abi.encodeWithSelector(IERC20.transfer.selector,

address(this), IERC20(tokenAddress).balanceOf(address(depositHandler)))

386:);

387:

LOW

20 | P a g e

388: if (!success || (returnData.length != uint256(0) &&

!abi.decode(returnData, (bool)))) revert BurnFailed(symbol);

389:

390: // NOTE: `depositHandler` must always be destroyed in the

same runtime context that it is deployed.

391: depositHandler.destroy(address(this));

392: } else {

393: IBurnableMintableCappedERC20(tokenAddress).burn(salt);

394: }

395: }

The admin command is parsed at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute(bytes calldata input) external override {

263: (bytes memory data, bytes memory proof) = abi.decode(input,

(bytes, bytes));

264:

265: bytes32 messageHash =

ECDSA.toEthSignedMessageHash(keccak256(data));

266:

267: // TEST auth and getaway separately

268: bool currentOperators =

IHilterAuth(AUTH_MODULE).validateProof(messageHash, proof);

269:

270: uint256 chainId;

271: bytes32[] memory commandIds;

272: string[] memory commands;

273: bytes[] memory params;

274:

275: try HilterGateway(this)._unpackLegacyCommands(data) returns (

276: uint256 chainId_,

277: bytes32[] memory commandIds_,

278: string[] memory commands_,

279: bytes[] memory params_

280:) {

281: (chainId, commandIds, commands, params) = (chainId_,

commandIds_, commands_, params_);

282: } catch {

21 | P a g e

283: (chainId, commandIds, commands, params) = abi.decode(data,

(uint256, bytes32[], string[], bytes[]));

284: }

285:

286: if (chainId != block.chainid) revert InvalidChainId();

287:

288: uint256 commandsLength = commandIds.length;

289:

290: if (commandsLength != commands.length || commandsLength !=

params.length) revert InvalidCommands();

291:

292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

294:

295: if (isCommandExecuted(commandId)) continue; /* Ignore if

duplicate commandId received */

296:

297: bytes4 commandSelector;

298: bytes32 commandHash =

keccak256(abi.encodePacked(commands[i]));

299:

300: ...

308: } else if (commandHash == SELECTOR_BURN_TOKEN) {

309: commandSelector = HilterGateway.burnToken.selector;

310: …

If the internal token implementation is used, then the burn function of the

"BurnableMintableCappedERC20" will be called, which indeed will emit an event

as part of the open zeppelin ERC20 implementation:

File: /hilter-cgp-solidity/contracts/BurnableMintableCappedERC20.sol

34: function burn(bytes32 salt) external onlyOwner {

35: address account = depositAddress(salt);

36: _burn(account, balanceOf[account]);

37: }

22 | P a g e

File: /hilter-cgp-solidity/contracts/ERC20.sol

200: * Emits a {Transfer} event with `to` set to the zero address.

201: *

202: * Requirements:

203: *

204: * - `account` cannot be the zero address.

205: * - `account` must have at least `amount` tokens.

206: */

207: function _burn(address account, uint256 amount) internal virtual

{

208: if (account == address(0)) revert InvalidAccount();

209:

210: _beforeTokenTransfer(account, address(0), amount);

211:

212: balanceOf[account] -= amount;

213: totalSupply -= amount;

214: emit Transfer(account, address(0), amount);

215: }

However, in case that an external token implementation is used, it is possible

that no event regarding the exact minted amount will be emitted. Currently, the

DepositHandler implementation is the following and emits no event:

File: /hilter-cgp-solidity/contracts/DepositHandler.sol

22: function execute(address callee, bytes calldata data) external

noReenter returns (bool success, bytes memory returnData) {

23: if (callee.code.length == 0) revert NotContract();

24: (success, returnData) = callee.call(data);

25: }

On the other hand, an event about the successful execution of the command

will be emitted by the "execute" functionality:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

23 | P a g e

294:

295: ...

317:

320: (bool success,) =

address(this).call(abi.encodeWithSelector(commandSelector, params[i],

commandId));

321:

322: if (success) emit Executed(commandId);

323: else _setCommandExecuted(commandId, false);

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

24 | P a g e

5.2.2 Event not emitted in "mintToken" functionality at "HilterGateway.sol"

Description

It was identified that the admin command "mintToken" does not emit an event

with the exact amount when an external token is used. A contract can emit

events when it wants to notify external entities like users, chain explorers, or

dApps about changes or conditions in the blockchain. When an event is emitted,

it stores the arguments passed in transaction logs. These logs are stored on

blockchain and are accessible using address of the contract till the contract is

present on the blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

465: function _mintToken(

466: string memory symbol,

467: address account,

468: uint256 amount

469:) internal {

470: address tokenAddress = tokenAddresses(symbol);

471:

472: if (tokenAddress == address(0)) revert

TokenDoesNotExist(symbol);

473:

474: _setTokenDailyMintAmount(symbol, tokenDailyMintAmount(symbol)

+ amount);

475:

476: if (_getTokenType(symbol) == TokenType.External) {

477: bool success = _callERC20Token(tokenAddress,

abi.encodeWithSelector(IERC20.transfer.selector, account, amount));

478:

479: if (!success) revert MintFailed(symbol);

480: } else {

481: IBurnableMintableCappedERC20(tokenAddress).mint(account,

amount);

482: }

483: }

LOW

25 | P a g e

Which is called by:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

366:

367: function mintToken(bytes calldata params, bytes32) external

onlySelf {

368: (string memory symbol, address account, uint256 amount) =

abi.decode(params, (string, address, uint256));

369:

370: _mintToken(symbol, account, amount);

371: }

372:

The admin command is parsed at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute(bytes calldata input) external override {

263: (bytes memory data, bytes memory proof) = abi.decode(input,

(bytes, bytes));

264:

265: bytes32 messageHash =

ECDSA.toEthSignedMessageHash(keccak256(data));

266:

267: // TEST auth and getaway separately

268: bool currentOperators =

IHilterAuth(AUTH_MODULE).validateProof(messageHash, proof);

269:

270: uint256 chainId;

271: bytes32[] memory commandIds;

272: string[] memory commands;

273: bytes[] memory params;

274:

275: try HilterGateway(this)._unpackLegacyCommands(data) returns

(

276: uint256 chainId_,

277: bytes32[] memory commandIds_,

278: string[] memory commands_,

279: bytes[] memory params_

280:) {

26 | P a g e

281: (chainId, commandIds, commands, params) = (chainId_,

commandIds_, commands_, params_);

282: } catch {

283: (chainId, commandIds, commands, params) = abi.decode(data,

(uint256, bytes32[], string[], bytes[]));

284: }

285:

286: if (chainId != block.chainid) revert InvalidChainId();

287:

288: uint256 commandsLength = commandIds.length;

289:

290: if (commandsLength != commands.length || commandsLength !=

params.length) revert InvalidCommands();

291:

292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

294:

295: if (isCommandExecuted(commandId)) continue; /* Ignore if

duplicate commandId received */

296:

297: bytes4 commandSelector;

298: bytes32 commandHash =

keccak256(abi.encodePacked(commands[i]));

299:

300: ...

302: } else if (commandHash == SELECTOR_MINT_TOKEN) {

303: commandSelector = HilterGateway.mintToken.selector;

310: ...

312:

If the internal token implementation is used, then the mint function of the

"MintableCappedERC20" will be called, which indeed will emit an event as part

of the open zeppelin ERC20 implementation:

File: /hilter-cgp-solidity/contracts/MintableCappedERC20.sol

23: function mint(address account, uint256 amount) external onlyOwner

{

24: uint256 capacity = cap;

27 | P a g e

25:

26: _mint(account, amount);

27:

28: if (capacity == 0) return;

29:

30: if (totalSupply > capacity) revert CapExceeded();

31: }

File: /hilter-cgp-solidity/contracts/ERC20.sol

177: /** @dev Creates `amount` tokens and assigns them to `account`,

increasing

178: * the total supply.

179: *

180: * Emits a {Transfer} event with `from` set to the zero address.

181: *

182: * Requirements:

183: *

184: * - `to` cannot be the zero address.

185: */

186: function _mint(address account, uint256 amount) internal virtual

{

187: if (account == address(0)) revert InvalidAccount();

188:

189: _beforeTokenTransfer(address(0), account, amount);

190:

191: totalSupply += amount;

192: balanceOf[account] += amount;

193: emit Transfer(address(0), account, amount);

194: }

However, in case that an external token implementation is used, it is possible

that no event regarding the exact minted amount will be emitted.

28 | P a g e

On the other hand, an event about the successful execution of the command

will be emitted by the "execute" functionality:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

294:

295: ...

317:

320: (bool success,) =

address(this).call(abi.encodeWithSelector(commandSelector, params[i],

commandId));

321:

322: if (success) emit Executed(commandId);

323: else _setCommandExecuted(commandId, false);

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MUI:

X/MS:X/MC:X/MI:X/MA:X

29 | P a g e

5.2.3 Event not emitted in self functionality "collectFees()" at

"HilterGasService.sol"

Description

It was identified that the admin command "collectFees" does not emit an event

when the native token is selected. A contract can emit events when it wants to

notify external entities like users, chain explorers, or dApps about changes or

conditions in the blockchain. When an event is emitted, it stores the arguments

passed in transaction logs. These logs are stored on blockchain and are

accessible using address of the contract till the contract is present on the

blockchain

The issue exists at the following location:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:

function collectFees(address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer(address(this).balance);

128: } else {

129: uint256 amount = IERC20(token).balanceOf(address(this));

130: _safeTransfer(token, receiver, amount);

131: }

132: }

133: }

And the "_safeTransfer()" will be:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer(

148: address tokenAddress,

149: address receiver,

150: uint256 amount

LOW

30 | P a g e

151:) internal {

152: (bool success, bytes memory returnData) =

tokenAddress.call(abi.encodeWithSelector(IERC20.transfer.selector,

receiver, amount));

153: bool transferred = success && (returnData.length == uint256(0)

|| abi.decode(returnData, (bool)));

154:

155: if (!transferred || tokenAddress.code.length == 0) revert

TransferFailed();

156: }

157:

If the IERC20 token implementation is used, then the "transfer" selector will be

called, which will probably emit an event as part of the ERC20 implementation.

However, if the ADDRESS_ZERO is used, and the native token is selected, no

event will be emitted.

For example, the following test can be used:

const destinationChain = 'ethereum';

const destinationAddress = ownerWallet.address;

const payload = defaultAbiCoder.encode(['address', 'address'],

[ownerWallet.address, userWallet.address]);

const symbol = 'USDC';

const amount =0;

const gasToken = testToken.address;

const gasFeeAmount = 0;

const nativeGasFeeAmount =0;

await testToken.connect(userWallet).approve(gasService.address, 0);

await

expect(gasService.connect(ownerWallet).collectFees(ownerWallet.address,

[ADDRESS_ZERO])).to.emit(testToken, 'Transfer');

And the output will be:

 AssertionError: Expected event "Transfer" to be emitted, but it wasn't

31 | P a g e

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

32 | P a g e

5.2.4 Event not emitted in self functionality "refund()" at

"HilterGasService.sol"

Description

It was identified that the admin command "refund" does not emit an event,

when the native token is selected. A contract can emit events when it wants to

notify external entities like users, chain explorers, or dApps about changes or

conditions in the blockchain. When an event is emitted, it stores the arguments

passed in transaction logs. These logs are stored on blockchain and are

accessible using address of the contract till the contract is present on the

blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund(

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner {

140: if (token == address(0)) {

141: receiver.transfer(amount);

142: } else {

143: _safeTransfer(token, receiver, amount);

144: }

145: }

And the "_safeTransfer()" will be:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer(

148: address tokenAddress,

149: address receiver,

150: uint256 amount

151:) internal {

LOW

33 | P a g e

152: (bool success, bytes memory returnData) =

tokenAddress.call(abi.encodeWithSelector(IERC20.transfer.selector,

receiver, amount));

153: bool transferred = success && (returnData.length == uint256(0)

|| abi.decode(returnData, (bool)));

154:

155: if (!transferred || tokenAddress.code.length == 0) revert

TransferFailed();

156: }

157:

If the IERC20 token implementation is used, then the "transfer" selector will be

called, which will probably emit an event as part of the ERC20 implementation.

However, if the ADDRESS_ZERO is used, and the native token is selected, no

event will be emitted.

For example, the following test can be used:

const destinationChain = 'ethereum';

const destinationAddress = ownerWallet.address;

const payload = defaultAbiCoder.encode(['address', 'address'],

[ownerWallet.address, userWallet.address]);

const symbol = 'USDC';

const amount = 0;

const gasToken = testToken.address;

const gasFeeAmount = 0;

const nativeGasFeeAmount = 0;

await testToken.connect(userWallet).approve(gasService.address, 0);

 await expect(await

gasService.connect(ownerWallet).refund(userWallet.address, ADDRESS_ZERO,

0x0)).and.to.emit(testToken, 'Transfer').withArgs(gasService.address,

userWallet.address, 0x0);

And the output will be:

34 | P a g e

 AssertionError: Expected event "Transfer" to be emitted, but it wasn't

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

35 | P a g e

5.2.5 Insecure error handling of zero addresses at

"ReceiverImplementation.sol" and at "DepositReceiver.sol"

Description

The team identified that the "receiveAndSendToken()",

"receiveAndSendNative()", "receiveAndUnwrapNative()" functions of

ReceiverImplementation and the constructor of DepositReceiver , replace the "

refundAddress " with the "msg.sender " when the provided refundAddress is

zero. In general, the contract is deployed by the HilterDepositService .sol to act

as the recipient address for the cross-chain transfer. When tokens arrive here,

it calls the ReceiverImplementation .sol method to forward the tokens to the

user, auto-unwrapping if necessary. While the validation of the "refundAddress"

parameter is implemented correctly , the error handling is insecure , since the

msg .sender might not be able to handle the incoming tokens , especially if

instead of an EOA , a contract address is used . In a worst -case scenario , the

caller contract logic might lock the incoming funds.

The issue exists in the following locations:

▪ contracts/deposit-service/ReceiverImplementation.sol:27:

if (refundAddress == address(0)) refundAddress = msg.sender;

▪ contracts/deposit-service/ReceiverImplementation.sol:52:

if (refundAddress == address(0)) refundAddress = msg.sender;

▪ contracts/deposit-service/ReceiverImplementation.sol:77:

if (refundAddress == address(0)) refundAddress = msg.sender;

▪ contracts/deposit-service/DepositReceiver.sol:25: if (

refundAddress == address(0)) refundAddress = msg.sender;

LOW

Since the external functionalities are mainly designed to be used by the

upgradable HilterDepositService, the issue is marked as LOW.

36 | P a g e

Recommendation

It is advisable to verify that the address is not the zero address and then revert

the transaction

The functions assert and require can be used to check for conditions and throw

an exception

if the condition is not met. The control can also be implemented

with a simple check:

if(refundAddress == address(0)) revert RefundFailed();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:L/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

37 | P a g e

5.2.6 Lack of circuit breaker for emergency stop at "HilterDepositService"

Description

It was identified that the "HilterDepositService " does not support a circuit

breaker control. A circuit breaker, also referred to as an emergency stop, can

stop the execution of functions inside the smart contract. A circuit breaker can

be triggered manually by trusted parties included in the contract like the

contract admin or by using programmatic rules that automatically trigger the

circuit breaker when the defined conditions are met. Applying the Emergency

Stop pattern to a contract adds a fast and reliable method to halt any sensitive

contract functionality as soon as a bug or another security issue is discovered.

This leaves enough time to weigh all options and possibly upgrade the

contract to fix the security breach.

However, it should be noted that the negative consequence of having an

emergency stop mechanism from a user’s point of view is, that it adds

unpredictable contract behavior.

Recommendation

It is advisable to add a circuit breaker. For example, the following code can be

used to set a modifier:

bool public contractPaused = false;

function circuitBreaker() public onlyOwner { // onlyOwner can call

if (contractPaused == false) { contractPaused = true; }

else { contractPaused = false; }

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require(contractPaused == false);

LOW

_;

}

38 | P a g e

And then:

function _execute(

DepositReceiver depositReceiver,

address callee,

uint256 nativeValue,

bytes memory payload

) internal checkIfPaused returns (bool)

This approach is similar to openzeppelin pausable contract which can be found

in the following URL:

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/security/Pausable.sol

In both

cases, a multisig Owner address must be used to ensure a

decentralization strategy.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

39 | P a g e

5.2.7 Lack of circuit breaker for emergency stop at "HilterGateway"

Description

It was identified that the "HilterGateway " does not support a circuit breaker

control. A circuit breaker, also referred to as an emergency stop, can stop the

execution of functions inside the smart contract . A circuit breaker can be

triggered manually by trusted parties included in the contract like the contract

admin or by using programmatic rules that automatically trigger the circuit

breaker when the defined conditions are met. Applying the Emergency Stop

pattern to a contract adds a fast and reliable method to halt any sensitive

contract functionality as soon as a bug or another security issue is discovered.

This leaves enough time to weigh all options and possibly upgrade the contract

to fix the security breach.

Currently, the only way for the admins to halt the transactions is to lower the

daily limit to zero. However, this control requires excessive resources, as it will

have to be enforced on each affected symbol instead of a global variable, and

as a result may not be able to be enforced on time.

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

204: function setTokenDailyMintLimits(string[] calldata symbols,

uint256[] calldata limits) external override onlyAdmin {

205: if (symbols.length != limits.length) revert

InvalidSetDailyMintLimitsParams();

206:

207: for (uint256 i = 0; i < symbols.length; i++) {

208: string memory symbol = symbols[i];

209: uint256 limit = limits[i];

210:

211: if (tokenAddresses(symbol) == address(0)) revert

TokenDoesNotExist(symbol);

212:

213: _setTokenDailyMintLimit(symbol, limit);

214: }

LOW

215: }

40 | P a g e

However, it should be noted that the negative consequence of having an

emergency stop mechanism from a user’s point of view is, that it adds

unpredictable contract behavior.

Recommendation

It is advisable to add a circuit breaker. For example, the following code can be

used to set a modifier:

bool public contractPaused = false;

function circuitBreaker() public onlyOwner { // onlyOwner can call

if (contractPaused == false) { contractPaused = true; }

else { contractPaused = false;

}

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require(contractPaused == false);

_;

}

And then:

function sendToken(

string calldata destinationChain,

string calldata destinationAddress,

string calldata symbol,

uint256 amount

) external checkIfPaused

This approach is similar to openzeppelin pausable contract which can be found

in the following URL:

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/security/Pausable.sol

In both cases, a multisig Owner address must be used to ensure a

decentralization strategy.

CVSS Score
AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU
I:X/MS:X/MC:X/MI:X/MA:X

41 | P a g e

5.2.8 Unvalidated amount in "_mintToken" at "HilterGateway.sol"

Description

It was identified that internal function "_mintToken" does not ensure that the

mint amount is non-zero. Although minting zero tokens is an operation that will

neither modify the state of the contract nor produce any results, it will spend

the gas the user has provided. Furthermore, it may emit the corresponding

event, depending on the ERC20 token's implementation.

The internal function "_mintToken" is called by the admin function "mintToken"

and the external function "validateContractCallAndMint", which also do not

ensure that the mint amount is non-zero. These external functions are called

with operator supplied input data as part of the command execution

functionality.

File: hilter-cgp-solidity/contracts/HilterGateway.sol

465: function _mintToken(

466: string memory symbol,

467: address account,

468: uint256 amount

469:) internal {

470: address tokenAddress = tokenAddresses(symbol);

471:

472: if (tokenAddress == address(0)) revert

TokenDoesNotExist(symbol);

473:

474: _setTokenDailyMintAmount(symbol, tokenDailyMintAmount(symbol)

+ amount);

475:

476: if (_getTokenType(symbol) == TokenType.External) {

477: bool success = _callERC20Token(tokenAddress,

abi.encodeWithSelector(IERC20.transfer.selector, account, amount));

478:

479: if (!success) revert MintFailed(symbol);

480: } else {

481: IBurnableMintableCappedERC20(tokenAddress).mint(account,

amount);

482: }

LOW

42 | P a g e

483: }

For example, the following test case will succeed:

it('mint tokens with zero amount', async () => {

 const amount = 0;

 const zeroMintData = buildCommandBatch(

 CHAIN_ID,

 [getRandomID()],

 ['mintToken'],

 [getMintCommand(symbol, owner.address, amount)],

);

 const zeroMintInput = await

getSignedMultisigExecuteInput(zeroMintData, operators, operators.slice(0,

threshold));

 await expect(gateway.execute(zeroMintInput)).to.emit(gateway,

'Executed');

});

And the output will be:

 command mintToken

 ✓ mint tokens with zero amount

Recommendation

It is recommended to verify that the mint amount is greater than zero.

The functions "assert" and "require" can be used to check for conditions and

throw an exception if the condition is not met. The control can also be

implemented with a simple check:

if (amount == 0) revert InvalidAmount();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

43 | P a g e

5.2.9 Unvalidated amount in "burn" and "burnFrom" at

"BurnableMintableCappedERC20.sol"

Description

It was found that the "amount" in external function "burnFrom()" and the

"balanceOf[account]" in external "burn()" is not validated to be non-zero.

Although burning zero tokens is an operation that will neither modify the state

of the contract nor produce any results, it will spend the gas the user has

provided. Furthermore, it is possible to burn zero tokens from any account and

emit the corresponding event, since and the default allowance for all accounts

is zero and the corresponding check will succeed.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/BurnableMintableCappedERC20.sol 39:

function burnFrom(address account, uint256 amount) external onlyOwner {

 40: uint256 _allowance = allowance[account][msg.sender];

 41: if (_allowance != type(uint256).max) {

 42: _approve(account, msg.sender, _allowance -

amount);

 43: }

 44: _burn(account, amount);

 45: }

It should be noted that when the functions are called from the HilterGateway ,

only the "burn()" can be exploited, as the "_burnTokenFrom()" which calls the "

burnFrom()" already contains a such security control as it can be seen below:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

485: function _burnTokenFrom(

486: address sender,

487: string memory symbol,

488: uint256 amount

489:) internal {

490: address tokenAddress = tokenAddresses(symbol);

491:

LOW

44 | P a g e

492: if (tokenAddress == address(0)) revert

TokenDoesNotExist(symbol);

493: if (amount == 0) revert InvalidAmount();

494:

The following test case can be used to replicate this issue:

const burnAmount = 0;

await token.transfer(depositHandlerAddress, burnAmount);

const dataFirstBurn = buildCommandBatch(CHAIN_ID, [getRandomID()],

['burnToken'], [getBurnCommand(symbol, salt)]);

const firstInput = await getSignedMultisigExecuteInput(dataFirstBurn,

operators, operators.slice(0, threshold));

await expect(gateway.execute(firstInput)).to.emit(token,

'Transfer').withArgs(depositHandlerAddress, ADDRESS_ZERO, burnAmount);

And the output will be:

 command burnToken

 ✓ able to burn zero tokens

Recommendation

It is advisable to verify that the amount is not zero.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check.

In burn():

if (balanceOf[account] == 0) revert InvalidAmount();

In burnFrom():

if (amount == 0) revert InvalidAmount();

45 | P a g e

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU
I:X/MS:X/MC:X/MI:X/MA:X

46 | P a g e

5.2.10 Unvalidated amount in "refund" at "HilterGasService.sol"

Description

It was found that the "amount" in the external function "refund" is not validated

to be non-zero. Although requesting a refund of zero tokens is an operation that

will neither modify the state of the contract nor produce any results, it will spend

the gas the user has provided. Furthermore, it may be possible to transfer zero

tokens from the Gas Service and emit the corresponding event even though the

user is not eligible for a refund, depending on the ERC20 token's

implementation.

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund(

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner {

140: if (token == address(0)) {

141: receiver.transfer(amount);

142: } else {

143: _safeTransfer(token, receiver, amount);

144: }

145: }

The following test case can be used to replicate the issue:

await expect(await

gasService.connect(ownerWallet).refund(userWallet.address,

testToken.address, 0x0))

.and.to.emit(testToken, 'Transfer')

.withArgs(gasService.address, userWallet.address, 0x0);

And the output would be:

LOW

47 | P a g e

 gas receiver

 ✓ refund zero amount

Recommendation

It is advisable to verify that the amount is not zero.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check:

if (amount == 0) revert InvalidAmount();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

48 | P a g e

5.2.11 No multisig protection in "util/upgradable.sol"

Description

The team identified that the admin role (owner) of the "util/upgradable.sol"

contract is not protected with multisig. Smart contracts have privileged roles

that are responsible to perform operations such as minting, pausing, and

upgrading, which are necessary in the lifecycle of a project. The best practice for

securing admin accounts is to use a multisig. A multisig is a contract that can

execute actions, as long as a predefined number of trusted members agree

upon it. A multisig has a number of owners (N) and requires some of them (M)

to approve a transaction. This configuration is referred to as M of N.

In the specific case, the admin role (owner) of the contract is responsible for

transferring the ownership of the contract and upgrading the contract:

File: hilter-cgp-solidity/contracts/util/Upgradable.sol

25: function transferOwnership(address newOwner) external virtual

onlyOwner {

...

32: }

41: function upgrade(

42: address newImplementation,

43: bytes32 newImplementationCodeHash,

44: bytes calldata params

45:) external override onlyOwner {

...

59: }

However, the team identified that the owner is verified only by comparing the

msg.sender with a stored address in the storage slot:

File: hilter-cgp-solidity/contracts/util/Upgradable.sol

11: bytes32 internal constant _OWNER_SLOT =

0x02016836a56b71f0d02689e69e326f4f4c1b9057164ef592671cf0d37c8040c0;

12:

13: modifier onlyOwner() {

LOW

49 | P a g e

14: if (owner() != msg.sender) revert NotOwner();

15: _;

16: }

17:

18: function owner() public view returns (address owner_) {

19: // solhint-disable-next-line no-inline-assembly

20: assembly {

21: owner_ := sload(_OWNER_SLOT)

22: }

23: }

File: hilter-cgp-solidity/contracts/deposit-

service/HilterDepositService.sol

11:

12: // This should

be owned by the microservice that is paying for gas.

13: contract HilterDepositService

is Upgradable, IHilterDepositService {

Recommendation

It is advisable to protect the owner functions of the upgradable contract with

multisig.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

50 | P a g e

5.2.12 Unvalidated amount in "payGasForContractCall()",

"payGasForContractCallWithToken()", and the "addGas()" functions at

"HilterGasService.sol"

Description

It was found that the "amount" in the external function "_safeTransferFrom" is

not validated to be non-zero. The function is currently used by the

"payGasForContractCall()", "payGasForContractCallWithToken()", and the

"addGas()" external functions. Although transferring zero tokens is an operation

that will neither modify the state of the contract nor produce any results, it will

spend the gas the user has provided. Furthermore, it may be possible to transfer

zero tokens from any account and emit the corresponding event, depending on

the ERC20 token's implementation.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

158: function _safeTransferFrom(

159: address tokenAddress,

160: address from,

161: uint256 amount

162:) internal {

163: (bool success, bytes memory returnData) = tokenAddress.call(

164: abi.encodeWithSelector(IERC20.transferFrom.selector, from,

address(this), amount)

165:);

166: bool transferred = success && (returnData.length == uint256(0)

|| abi.decode(returnData, (bool)));

167:

168: if (!transferred || tokenAddress.code.length == 0) revert

TransferFailed();

169: }

Currently, the "_safeTransferFrom" is called from a number of external

functions. The "payGasForContractCall()":

LOW

51 | P a g e

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

11: // This is called on the source chain before calling the gateway

to execute a remote contract.

12: function payGasForContractCall(

13: address sender,

14: string calldata destinationChain,

15: string calldata destinationAddress,

16: bytes calldata payload,

17: address gasToken,

18: uint256 gasFeeAmount,

19: address refundAddress

20:) external override {

21: _safeTransferFrom(gasToken, msg.sender, gasFeeAmount);

The "payGasForContractCallWithToken()":

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

35: function payGasForContractCallWithToken(

36: address sender,

37: string calldata destinationChain,

38: string calldata destinationAddress,

39: bytes calldata payload,

40: string memory symbol,

41: uint256 amount,

42: address gasToken,

43: uint256 gasFeeAmount,

44: address refundAddress

45:) external override {

46: {

47: _safeTransferFrom(gasToken, msg.sender, gasFeeAmount);

48: }

And the "addGas()":

52 | P a g e

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

100: function addGas(

101: bytes32 txHash,

102: uint256 logIndex,

103: address gasToken,

104: uint256 gasFeeAmount,

105: address refundAddress

106:) external override {

107: _safeTransferFrom(gasToken, msg.sender, gasFeeAmount);

108:

109: emit GasAdded(txHash, logIndex, gasToken, gasFeeAmount,

refundAddress);

110: }

For example, the following test case will succeed:

 it('zero gas is added', async () => {

 const txHash = keccak256(defaultAbiCoder.encode(['string'],

['random tx hash']));

 const logIndex = 13;

 const gasToken = testToken.address;

 const gasFeeAmount = 0;

 const nativeGasFeeAmount = parseEther('1.0');

 await testToken.connect(userWallet).approve(gasService.address,

1e6);

 await expect(gasService.connect(userWallet).addGas(txHash,

logIndex, gasToken, gasFeeAmount, userWallet.address))

 .to.emit(gasService, 'GasAdded')

 .withArgs(txHash, logIndex, gasToken, gasFeeAmount,

userWallet.address)

 .and.to.emit(testToken, 'Transfer')

 .withArgs(userWallet.address, gasService.address,

gasFeeAmount);

53 | P a g e

});

And the output will be:

 HilterGasService

 ✓ zero gas is added

Recommendation

It is advisable to verify that the amount is not zero. Since all

functions use the

"_safeTransferFrom" internal function, the check can be performed there.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check:

if (amount == 0) revert InvalidAmount();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

54 | P a g e

5.2.13 Unvalidated amount in "collectfees" at "HilterGasService.sol"

Description

It was identified that the function "collectFees()" does not validate the amount

parameter. Although transfering zero tokens is an operation that will neither

modify the state of the contract nor produce any results, it will spend the gas

the user has provided. Furthermore, it may emit the corresponding event,

depending on the ERC20 token's implementation.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:

function collectFees(address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer(address(this).balance);

128: } else {

129: uint256 amount = IERC20(token).balanceOf(address(this));

130: _safeTransfer(token, receiver, amount);

131: }

132: }

133: }

which will call either the "receiver.transfer()" or the "_safeTransfer()". And the

“_safeTransfer()":

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer(

148: address tokenAddress,

149: address receiver,

150: uint256 amount

151:) internal {

LOW

55 | P a g e

152: (bool success, bytes memory returnData) =

tokenAddress.call(abi.encodeWithSelector(IERC20.transfer.selector,

receiver, amount));

153: bool transferred = success && (returnData.length == uint256(0)

|| abi.decode(returnData, (bool)));

154:

155: if (!transferred || tokenAddress.code.length == 0) revert

TransferFailed();

156: }

For example, the following test case will succeed:

 it('collect zero fees', async () => {

 const destinationChain = 'ethereum';

 const destinationAddress = ownerWallet.address;

 const payload = defaultAbiCoder.encode(['address', 'address'],

[ownerWallet.address, userWallet.address]);

 const symbol = 'USDC';

 const amount = 0;

 const gasToken = testToken.address;

 const gasFeeAmount = 0;

 const nativeGasFeeAmount = 0;

 await

testToken.connect(userWallet).approve(gasService.address, 0);

 await expect(await

gasService.connect(ownerWallet).collectFees(ownerWallet.address, [

testToken.address]))

 .to.changeEtherBalance(ownerWallet, nativeGasFeeAmount)

 .and.to.emit(testToken, 'Transfer')

 .withArgs(gasService.address, ownerWallet.address,

gasFeeAmount);

 });

And the output will be:

56 | P a g e

 gas receiver

 ✓ collect zero fees

Recommendation

It is recommended to verify that the amount is greater than zero.

The functions "assert" and "require" can be used to check for conditions and

throw an exception if the condition is not met. The control can also be

implemented with a simple check:

if (amount == 0) revert InvalidAmount();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

57 | P a g e

5.2.14 Unvalidated address "receiver" in "collectFees" at "HilterGasService.sol"

Description

It was found that the "receiver" in the external function "collectFees" is not

validated to not be the zero address. Transferring a number of tokens to the

zero address is equivalent to burning that number of tokens.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:

function collectFees(address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer(address(this).balance);

128: } else {

129: uint256 amount = IERC20(token).balanceOf(address(this));

130: _safeTransfer(token, receiver, amount);

131: }

132: }

133: }

For example, the following test case can be used to replicate the issue:

await expect(gasService.connect(ownerWallet).collectFees(ADDRESS_ZERO,

[ADDRESS_ZERO]));

And the output will be:

 gas receiver

 ✓ collectfees to zero address

LOW

58 | P a g e

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check:

if (receiver == address(0)) revert InvalidReceiver();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

59 | P a g e

5.2.15 Unvalidated address "receiver" in "refund" at "HilterGasService.sol"

Description

It was found that the "receiver" in the external function "refund" is not validated

to not be the zero address. Transfering an amount of tokens to the zero address

is equivalent to burning that amount of tokens.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund(

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner {

140: if (token == address(0)) {

141: receiver.transfer(amount);

142: } else {

143: _safeTransfer(token, receiver, amount);

144: }

145: }

The following test case can be used to replicate this issue:

await expect(gasService.connect(ownerWallet).refund(ADDRESS_ZERO,

ADDRESS_ZERO, gasFeeAmount));

And the output will be:

 gas receiver

 ✓ refund to zero address

LOW

60 | P a g e

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check:

if (receiver == address(0)) revert InvalidReceiver();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

61 | P a g e

5.2.16 Unvalidated address "recipient" in "withdrawNative" at

"HilterDepositService.sol"

Description

It was found that the "recipient" in the external function "withdrawNative" is not

validated to not be the zero address. Transferring a number of tokens to the

zero address is equivalent to burning that number of tokens.

The issue exists at the following function:

File: /hilter-cgp-solidity/contracts/deposit-

service/HilterDepositService.sol

115: function withdrawNative(bytes32 salt, address payable recipient)

external {

116: address token = wrappedToken();

117: DepositReceiver depositReceiver = new DepositReceiver{

118: salt: keccak256(abi.encode(PREFIX_DEPOSIT_WITHDRAW_NATIVE,

salt, recipient))

119: }();

120: uint256 amount =

IERC20(token).balanceOf(address(depositReceiver));

121:

122: if (amount == 0) revert NothingDeposited();

123:

124: if (!_execute(depositReceiver, token, 0,

abi.encodeWithSelector(IWETH9.withdraw.selector, amount))) revert

UnwrapFailed();

125:

126: // NOTE: `depositReceiver` must always be destroyed in the

same runtime context that it is deployed.

127: depositReceiver.destroy(recipient);

128: }

The following test case can be used to replicate this issue:

LOW

62 | P a g e

 If('unwrap native currency to zero address', async () => {

 const recipient = userWallet.address;

 const salt = formatBytes32String(1);

 const amount = 1e6;

 const depositAddress = await

depositService.depositAddressForWithdrawNative(salt, ADDRESS_ZERO);

 await token.connect(ownerWallet).transfer(depositAddress,

amount);

 await expect(await depositService.withdrawNative(salt,

ADDRESS_ZERO));

 });

And the output will be:

 gas receiver

 ✓ unwrap native currency to zero address

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw

an exception:

if(recipient == address(0)) revert UnwrapFailed();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU

I:X/MS:X/MC:X/MI:X/MA:X

63 | P a g e

5.3 Informational Findings

5.3.1 Ownership can be transferred to same owner at "Ownable.sol"

Description

It was identified that the "transferOwnership" functionality does not validate if

the new owner is the same with the existing owner. Currently, the

"transferOwnership" function allows the current owner to transfer control of an

Ownable contract to a newOwner.

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/Ownable.sol

21: function transferOwnership(address newOwner) external virtual

onlyOwner {

22: if (newOwner == address(0)) revert InvalidOwner();

23:

24: emit OwnershipTransferred(owner, newOwner);

25: owner = newOwner;

26: }

A user, who is the owner of the specific contract, could use this function in order

to transfer the ownership again back to them, creating an event of this

transaction.

It should be noted that the same logic is also implemented in the Ownable.sol

contract from Open Zeppelin

INFO

Recommendation

It is advisable to verify that the newOwner is different than the current owner.

The functions assert and require can be used to check for conditions and throw

an exception if the condition is not met. The control can also be implemented

with a simple check:

if(newOwner == owner) revert

64 | P a g e

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MUI:
X/MS:X/MC:X/MI:X/MA:X

5.3.2 Lack of circuit breaker for emergency stop at "HilterGasService"

Description

It was identified that the "HilterGasService" does not support a circuit breaker

control. A circuit breaker, also referred to as an emergency stop, can stop the

execution of functions inside the smart contract . A circuit breaker can be

triggered manually by trusted parties included in the contract like the contract

admin or by using programmatic rules that automatically trigger the circuit

breaker when the defined conditions are met. Applying the Emergency Stop

pattern to a contract adds a fast and reliable method to halt any sensitive

contract functionality as soon as a bug or another security issue is discovered.

This leaves enough time to weigh all options and possibly upgrade the contract

in order to fix the security breach.

Recommendation

It is advisable to add a circuit breaker. For example, the following code can be

used to set a modifer:

INFO

bool public contractPaused = false;

function circuitBreaker() public onlyOwner { // onlyOwner can call

if (contractPaused == false) { contractPaused = true; }

else { contractPaused = false; }

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require(contractPaused == false);

_;

}

function _safeTransferFrom(

address tokenAddress,

address from,

uint256 amount

) internal checkIfPaused returns (bool)

65 | P a g e

66 | P a g e

This approach is similar to openzeppelin pausable contract which can be found

in the following URL:

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/security/Pausable.sol

In both cases, a multisig Owner address must be used to ensure a

decentralization strategy.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MUI:
X/MS:X/MC:X/MI:X/MA:X

67 | P a g e

5.3.3 Excessive loop iterations allowed in "setAdmins" at

"AdminMultisigBase.sol"

Description

It was identified that the internal function "_setAdmins", which is only called by

the administrator -only "setup" function in "HilterGateway .sol", contains a

potentially costly loop. Computational power on blockchain environments is

paid , thus reducing the computational steps required to complete an

operation is not only a matter of optimization but also cost efficiency . Loops

are a great example of costly operations : as many elements an array has ,

more iterations will be required to complete the loop.

Excessive loop iterations may exhaust all available gas. For example, if an

attacker is able to influence the element array's length, then they will be able to

cause a denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "_setAdmins" iterates over the

"adminAddresses" array which is decoded from the provided argument and is

of unspecified length:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

144: function _setAdmins(

145: uint256 adminEpoch,

146: address[] memory accounts,

147: uint256 threshold

148:) internal {

149: uint256 adminLength = accounts.length;

...

158: for (uint256 i; i < adminLength; ++i) {

The function is called by:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

241: function setup(bytes calldata params) external override {

242: // Prevent setup from being called on a non-proxy (the

implementation).

INFO

68 | P a g e

243: if (implementation() == address(0)) revert NotProxy();

244:

245: (address[] memory adminAddresses, uint256 newAdminThreshold,

bytes memory newOperatorsData) = abi.decode(

246: params,

247: (address[], uint256, bytes)

248:);

249:

250: // NOTE: Admin epoch is incremented to easily invalidate

current admin-related state.

251: uint256 newAdminEpoch = _adminEpoch() + uint256(1);

252: _setAdminEpoch(newAdminEpoch);

253: _setAdmins(newAdminEpoch, adminAddresses, newAdminThreshold);

254:

...

260: }

Recommendation

It is advisable to refactor the logic to not require to set all administrators in one

transaction (if required), or to insert an upper limit that will allow the operation

to be performed without failing due to insufficient gas.

If it is absolutely necessary to loop over an array of unknown size, the function

should be able to execute the operation in multiple blocks and in multiple

transactions. In that case, it will be required to maintain the extra state of how

many iterations have already been performed in order to continue from that

point in the next function call.

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:

X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

69 | P a g e

5.3.4 Excessive loop iterations allowed in "admins" at "HilterGateway.sol"

Description

It was identified that the external function "admins", which can be called by any

user, contains a potentially costly loop. Computational power on blockchain

environments is paid, thus reducing the computational steps required to

complete an operation is not only a matter of optimization but also cost

efficiency. Loops are a great example of costly operations: as many elements an

array has, more iterations will be required to complete the loop.

Excessive loop iterations exhaust all available gas. For example, if an attacker is

able to influence the element array's length, then they will be able to cause a

denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "admins()" which returns an array with all the

available admins, will iterate based on the result of the "_getAdminCount()"

functionality:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

190: /// @dev Returns the array of admins within a given `adminEpoch`.

191: function admins(uint256 epoch) external view override returns

(address[] memory results) {

192: uint256 adminCount = _getAdminCount(epoch);

193: results = new address[](adminCount);

194:

195: for (uint256 i; i < adminCount; ++i) {

196: results[i] = _getAdmin(epoch, i);

197: }

198: }

And the "_getAdminCount()":

File: hilter-cgp-solidity-contracts/AdminMultisigBase.sol

100: function _getAdminCount(uint256 adminEpoch) internal view returns

(uint256) {

101: return getUint(_getAdminCountKey(adminEpoch));

INFO

70 | P a g e

102: }

which eventually will retrieve it from the storage:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

64: function _getAdminCountKey(uint256 adminEpoch) internal pure

returns (bytes32) {

65: return keccak256(abi.encodePacked(PREFIX_ADMIN_COUNT,

adminEpoch));

66: }

67:

This could previously be configured at:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

140: function _setAdminCount(uint256 adminEpoch, uint256 adminCount)

internal {

141: _setUint(_getAdminCountKey(adminEpoch), adminCount);

142: }

143:

Which is used at:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

144: function _setAdmins(

145: uint256 adminEpoch,

146: address[] memory accounts,

147: uint256 threshold

148:) internal {

149: uint256 adminLength = accounts.length;

150:

151: if (adminLength < threshold) revert InvalidAdmins();

152:

153: if (threshold == uint256(0)) revert InvalidAdminThreshold();

154:

71 | P a g e

155: _setAdminThreshold(adminEpoch, threshold);

156: _setAdminCount(adminEpoch, adminLength);

157:

158: for (uint256 i; i < adminLength; ++i) {

159: address account = accounts[i];

160:

161: // Check that the account wasn't already set as an admin

for this epoch.

162: if (_isAdmin(adminEpoch, account)) revert

DuplicateAdmin(account);

163:

164: if (account == address(0)) revert InvalidAdmins();

165:

166: // Set this account as the i-th admin in this epoch (needed

to we can clear topic votes in `onlyAdmin`).

167: _setAdmin(adminEpoch, i, account);

168: _setIsAdmin(adminEpoch, account, true);

169: }

And this is configured at the "setup" functionality:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

241: function setup(bytes calldata params) external override {

242: // Prevent setup from being called on a non-proxy (the

implementation).

243: if (implementation() == address(0)) revert NotProxy();

244:

245: (address[] memory adminAddresses, uint256 newAdminThreshold,

bytes memory newOperatorsData) = abi.decode(

246: params,

247: (address[], uint256, bytes)

248:);

249:

250: // NOTE: Admin epoch is incremented to easily invalidate

current admin-related state.

251: uint256 newAdminEpoch = _adminEpoch() + uint256(1);

252: _setAdminEpoch(newAdminEpoch);

253: _setAdmins(newAdminEpoch, adminAddresses, newAdminThreshold);

72 | P a g e

254:

Recommendation

It is advisable to refactor the logic to return the admins in multiple transactions,

or to insert an upper limit that will allow the operation to be performed without

failing due to insufficient gas.

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:

X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

73 | P a g e

5.3.5 Excessive loop iterations allowed in "collectFees" at

"HilterGasService.sol"

Description

It was identified that the external function "collectFees", which can be called

only by the contract’s owner, contains a potentially costly loop. Computational

power on blockchain environments is paid, thus reducing the computational

steps required to complete an operation is not only a matter of optimization but

also cost efficiency. Loops are a great example of costly operations: as many

elements an array has, more iterations will be required to complete the loop.

 In the specific case, the function "collectFees" iterates over

the "tokens" array,

which is provided as argument and is of unspecified length:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:

function collectFees(address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer(address(this).balance);

128: } else {

129: uint256 amount = IERC20(token).balanceOf(address(this));

130: _safeTransfer(token, receiver, amount);

131: }

132: }

133: }

INFO

74 | P a g e

Recommendation

It is advisable to refactor the logic to not require to collect all the fees in one

transaction.

Alternatively, If it is absolutely necessary to loop over an array of unknown size,

the function should plan for it to potentially take multiple blocks and therefore

require multiple transactions. In that case, it will be required to maintain the

extra state of how many iterations have already been performed in order to

continue from that point in the next function call. However, this may cause

additional issues if other functions are executed while waiting for the next

iteration of this function to be executed.

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:

X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

75 | P a g e

5.3.6 Excessive loop iterations allowed in "execute" at "HilterGateway.sol"

Description

It was identified that the external function "execute", which can be called only

by the gateway operators, contains a potentially costly loop. Computational

power on blockchain environments is paid, thus reducing the computational

steps required to complete an operation is not only a matter of optimization but

also cost efficiency. Loops are a great example of costly operations: as many

elements an array has, more iterations will be required to complete the loop.

Excessive loop iterations may exhaust all available gas. For example, if an

attacker can influence the element array's length, then they will be able to cause

a denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "execute" iterates over the "commands" array

which is decoded from the provided arguments and is of unspecified length:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute(bytes calldata input) external override {269:

270: ….

291:

292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

294:

295: if (isCommandExecuted(commandId)) continue; /* Ignore if

duplicate commandId received */

296:

…

324: }

325: }

INFO

Recommendation

It is advisable to refactor the logic to perform the operation in multiple

transactions, or to insert an upper limit that will allow the operation to be

performed without failing due to insufficient gas.

76 | P a g e

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:

X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

77 | P a g e

5.3.7 No reentrancy protection in "execute" at "DepositReceiver.sol"

Description

It was identified that the "execute" function of the DepositReceiver.sol

is protected from Reentrancy attacks. This type of attack can occur when a

contract sends ether to an unknown address . An attacker can carefully

construct a contract at an external address that contains malicious code in the

fallback function . Thus , when a contract sends ether to this address , it will

invoke the malicious code. Typically, the malicious code executes a function

on the vulnerable contract , performing operations not expected by the

developer.

File: hilter-cgp-solidity/contracts/deposit-service/DepositReceiver.sol

20: function execute(

21: address callee,

22: uint256 value,

23: bytes calldata data

24:) external onlyOwner returns (bool success, bytes memory returnData)

{

25: if (callee.code.length == 0) revert NotContract();

26:

27: (success, returnData) = callee.call{ value: value }(data);

28: }

Recommendation

INFO

It is advisable to also use the "ReentrancyGuard" as an added layer of security.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MA

C:X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

78 | P a g e

5.3.8 Floating pragma in multiple interfaces at "contracts/interfaces/" folder

Description

It was found that many interfaces of smart contracts are using a floating

pragma. In Solidity programming, multiple APIs only be supported in some

specific versions. In each contract, the pragma keyword is used to enable certain

compiler features or checks. If a contract does not specify a compiler version,

developers might encounter compile errors in the future code reuse because of

the version gap.

The issue exists at:

▪ contracts/interfaces/IOwnable.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IMintableCappedERC20.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IERC20.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IUpgradable.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IERC20BurnFrom.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IERC20Permit.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterExecutable.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IWETH9.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IERC20Burn.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterForecallable.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IBurnableMintableCappedERC20.sol:3:pragma solidity

^0.8.9;

▪ contracts/interfaces/IDepositServiceBase.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterGateway.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterDepositService.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterAuthWeighted.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterGasService.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/IHilterAuth.sol:3:pragma solidity ^0.8.9;

▪ contracts/interfaces/ITokenDeployer.sol:3:pragma solidity ^0.8.9;

INFO

79 | P a g e

Recommendation

Source files should be annotated with a pragma version to reject compilation

with previous or future compiler versions that might introduce incompatible

changes.

It is recommended to avoid using the "^" directive to avoid using nightly builds,

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MA

C:X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

80 | P a g e

5.3.9 Setup functionality can be circumvented during contract upgrade at

"/contracts/util/Upgradable.sol"

Description

It was identified that the "upgradable" contracts allow the upgrade to take place

without calling the "setup" functionality. In general, upgradable contracts are

not able to use constructors to store data due to the proxy design. As a result,

a well-protected initialization functionality such as the "setup()" function is used

to perform the required operations. However, in the specific case, it was found

that the upgrade can take place without calling this functionality, by just not

providing any parameters. The initialization phase of an upgradeable smart

contract is one of the most important phases. If not properly handled, it can

compromise a smart contract with perfect business logic implementation.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/util/Upgradable.sol

49:

50: if (params.length > 0) {

51: // solhint-disable-next-line avoid-low-level-calls

52: (bool success,) =

newImplementation.delegatecall(abi.encodeWithSelector(this.setup.selector

, params));

53:

54: if (!success) revert SetupFailed();

55: }

Recommendation

INFO

It is advisable to always call the "setup()" initialization functionality by default.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MA

C:X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X

81 | P a g e

6 Retest Results

6.1 Retest of Medium Severity Findings

All MEDIUM-risk findings has been fixed.

6.2 Retest of Low Severity Findings

All LOW-risk vulnerabilities were found to be sufficiently mitigated, since the

affected functionality has been fixed or removed.

6.3

Retest of Informational Findings

 All INFORMATIONAL findings

has been fixed.

82 | P a g e

References & Applicable Documents

Ref. Title Version

N/A N/A N/A

Document History

Revision Description Changes Made By Date

0.2 Initial Draft Chaintroopers June 21 2025

1.0 First Version Chaintroopers July 15 , 2025

1.1
Added retest results

Added v4.3.0 results
Chaintroopers

August 3, 2025

