CHAIN TROOPERS

Hilter
Cross-Chain Gateway
Protocol (CGP)

Security Assessment Report

August 3,2025
Version 1.1

CONFIDENTIAL

CHAINTROOPERS

Table of Contents

Table Of CONTENES ...ooueiiieeeee e s s 2
T EXECULIVE SUMMIAIY ..iiiiiiiiiiiee ettt s e s 5
1.1 INEFOAUCEION ettt sttt saee e 5
1.2 ASSESSMENT RESUILS ..cueeeniieiieiieieeeee e 6
1.2.17 Retesting RESUILScccuiiiieeieeeeeeeeee e 7

1.3 SUMMaAry Of FINAINGS....coviiiiieieeecieeeceeeere e 8

2 ASSeSSMENt DESCIIPLION ..uuiiiiiiiiiiieeriieeeiee et srr e s e e 11
2.1 Target DeSCriPLiONccivuieeiiieeiiiieeeiee ettt sttt sire e sbae e 11
2.2 IN-SCOPEe COMPONENTSiiiiiiiieeiieeniteeeriee et e st e s e s e e s sneee e 11

S IV =1 g ToTo [0] [T =4V OSSPSR 12
3.1 Assessment MethodOIOgY......cccvevvieiriiiniiiniiicieeee e 12
3.2 SMArt CONTIACES ..eeeiiieieiiee ettt e s 12

4 SCONNE SYSTEIM ittt et s s e e s st e e s ssabeeeeessabsaeessnasrees 14
A1 CVSS e ettt st b e b ae e 14

5 1dentified FINAINGS ..coviiiiiiiiiiiiiicesieseesestere et sanesane 15
5.1 Medium Severity FINAINGS.....ccccceviiiiiiniieiiierieesieeieeee et 15
511 No upper bound in one operator's weight at
"HilterAuthWeighted.SOl.......cocuiiriiiiiieee e 15

5.1.2 No lower bound in threshold at "HilterAuthWeighted.sol" 16

5.1.3 Excessive loop iterations allowed in "setTokenDailyMintLimits" at
THILErGateWaY.SOI" ...t e 17

5.2 Low Severity FINAINGS ..ccccvviviiiiinieenieerieeteeeesee et 19

5.2.1 Event not emitted in "burnToken" functionality at
THILErGateWaY.SOI" ...t 19

5.2.2 Event not emitted in "mintToken" functionality at
THILErGateWaY.SOI" .. .ottt 24

2| Page

CHAINTROOPERS

5.2.3 Event not emitted in self functionality "collectFees()" at
"HIltErGasSSerVICE.SOI" ...eiiieiie e 29

5.2.4 Event not emitted in self functionality "refund()" at
HIEErGaSSEIVICE.SOI" .ttt e e e e e esaes 32

5.2.5 Insecure error handling of zero addresses at
"Receiverimplementation.sol" and at "DepositReceiver.sol"................. 35

5.2.6 Lack of (circuit breaker for emergency stop at
"HIlLErDePOSItSEIVICR" ..cniiiiiectee ettt eaae e 37

5.2.7 Lack of circuit breaker for emergency stop at "HilterGateway" 39
5.2.8 Unvalidated amountin "_mintToken" at "HilterGateway.sol"....41

5.2.9 Unvalidated amount in "burn" and "burnFrom" at

"BurnableMintableCappedERC20.501"........cccerviiirieiniiiieeeeeee e 43
5.2.10 Unvalidated amount in "refund" at "HilterGasService.sol"......... 46
5.2.11 No multisig protection in "util/upgradable.sol".........c.ccccevruurnren. 48
5.2.12 Unvalidated amount in "payGasForContractCall()",
"payGasForContractCallWithToken()", and the "addGas()" functions at
"HIItErGaSSEIVICE.SOI" ..ttt e 50

5.2.13 Unvalidated amountin "collectfees" at "HilterGasService.sol"54

5.2.14 Unvalidated address "receiver" in "collectFees" at
IO GaAS S B VIR SOOI ettt ettt ee e e e e e eeeeeeaa e aeeeeseseeessnnnnnnns 57

5.2.15Unvalidated address "receiver" in "refund" at
HIE O GaAS S B VIR SOOI ettt ettt e e e e e eetetaareeeesesesessssnnnnes 59

5.2.16 Unvalidated address 'recipient" in "withdrawNative" at
"HilterDepositServiCe.SOI" ...t 61

5.3 Informational FINAINGS.......ccccoviiriiiriiiinieinieciecec e 63

5.3.1 Ownership can be transferred to same owner at "Ownable.sol"
63

5.3.2 Lack of circuit breaker for emergency stop at "HilterGasService"
65

5.3.3 Excessive loop iterations allowed in "setAdmins "at"
AdMINMUItISIZBASE.SOI" ..ot e 67

3|Page

CHAINTROOPERS

5.3.4 Excessive loop iterations allowed in "admins" at
THILErGateWay.SOI" .. .o 69

5.3.5 Excessive loop iterations allowed in "collectFees" at
"HIlterGasSerViCe.SOI"o e 73

5.3.6 Excessive loop iterations allowed in ‘"execute" at
THIlLErGateWay.SOI" ... i 75

5.3.7 No reentrancy protection in "execute" at "DepositReceiver.sol"77

5.3.8 Floating pragma in multiple interfaces at "contracts/interfaces/"

L{0] (o 1= OO OO PRSP PP RPRRRP 78

5.3.9 Setup functionality can be circumvented during contract upgrade

at "/contracts/util/Upgradable.sol"..........covvieiiieniieniecie e 80

6 RELESE RESUILS ..ottt s st 81
6.1 Retest of Medium Severity FINAINGSccocevivviiriieniienieniesiesiesie e, 81
6.2 Retest of Low Severity FINAINGS......cccccovviiiniiiiieiieenreesieeneesee e 81
6.3 Retest of Informational FINdiNgScccevevviiniiiniieniecieciesresie e 81
References & Applicable DOCUMENLS ...cccoviiriiniinienienececese e 82
DOCUMENT HISTONY eiiiiiiiieeieietee ettt sttt e st e e e s sara e e e s ssaeeessanne 82

4| Page

CHAINTROOPERS

1 Executive Summary

1.1 Introduction

The report contains the results of Hilter Cross-Chain Gateway Protocol security
assessment that took place from June 2012025, to July 12, 2025" and from

July 15, 2025 to July 17, 2025 The security engineers performed an in-

depth manual analysis of the provided functionalities, and uncovered issues that
may be used by adversaries to affect the confidentiality, the integrity, and the
availability of the in-scope components.

All the identified vulnerabilities are presented in the report, including their impact
and the proposed mitigation strategy, and are ordered by their severity.

In total, the team identified nineteen (19) vulnerabilities. There were also nine (9)
informational issues of no-risk.

Total Findings

o
N
S

6 8 10 12 14 16 18

HIGH

MEDIUM
ov I

INFO

All the identified vulnerabilities are presented in the report, including their impact
and the proposed mitigation strategy, and are ordered by their severity. A
retesting phase was carried out on August2792025, and the resultsare
presented in Section 6.

5|Page

CHAINTROOPERS

1.2 Assessment Results

The assessment results revealed that the in-scope application components were
mainly vulnerable to three (3) Data Validation issues of MEDIUM risk. More
precisely, it was identified that the"_transferOwnership " functionality does not
impose an upper bound for the assigned weights on the selected operators (‘5.17.
1

- No upper bound in one operator's weight at "HilterAuthWeighted .sol”), allowing
values that can be excessive or even more than the assigned threshold . The
team also identified that the "_transferOwnership" functionality does not enforce
a lower bound for the selected new threshold (‘5.7.2 - No lower bound in threshold
at "Hilter AuthWeighted .sol™), permitting values that can be lower than the
maximum weight that has been selected for one of the operators.

Furthermore, it was found that the function which is used by administrators to
set the token's limits, contains a potentially costly loop that makes the function
inefficient for using it in emergency cases (‘5.1.3 - Excessive loop iterations allowed
in "setTokenDailyMintLimits " at "Hilter Gateway.sol™). If the admins provide a
significantly large array of tokens symbols, it is possible that the function will not
be fully executed neither in the current nor in the following blocks.

There were also fifteen (15) vulnerabilities of LOW risk and seven (7) findings of
no-risk (INFORMATIONAL). Regarding the Administration issues of LOW risk, it
was found that many admin functionalities do not emit the appropriate event
when the native token is selected ("5.2.3- Event not emitted in self functionality "
collectFees()" at "HilterGasService.sol™, ‘5.2.4 - Event not emitted in self functionality "
refund ()" at "Hilter GasService .sol™), potentially affecting the credibility and the
confidence in the system. A similar issue occurs when an ERC20 token is used (‘5.
2.1-Event not emitted in "burnToken " functionality at "Hilter Gateway .sol", ‘5.2.2 -
Event not emitted in "mintToken" functionality at "Hilter Gateway.sol™), even though
fully compliant ERC20 tokens should typically emit a related event. In reference to
the Access Control LOW-risk issues, it was found that the contracts do not have a
dedicated circuit breaker control that can be used in case of emergency to pause

the transactions (*5.2.6 - Lack of circuit breaker for emergency stop at
"HilterDepositService™, °5.2.7 - Lack of circuit breaker for emergency stop at

6|Page

CHAINTROOPERS

"HilterGateway™). There is only one control based on the token limits that might
not be effective as described in finding 5.1.3.

In reference to the LOW-risk Authentication issues, it was found that the admin
functions of one contract that provides an upgrade mechanism is not protected
with multisig (‘5.2.17 - No multisig protection in "util/upgradable .sol™), allowing
adversaries who have access to the admin’s private key to fully compromise the
related contracts. Regarding the Data Validation issues of LOW risk, it was found
that many external functionalities do not validate if the address of the receiver is
zero ('5.2.14- Unvalidated address "receiver" in "collectFees" at "HilterGasService.sol™
‘5.2.15-Unvalidated address "receiver" in "refund" at "Hilter GasService.sol", '5.2.16 -
Unvalidated address "recipient” in "withdrawNative" at "Hilter DepositService.sol™) or
if the provided amount is zero (‘5.2.8 - Unvalidated amount in "_mintToken " at "
Hilter Gateway .sol™, '5.2.9 - Unvalidated amount in "burn" and "burnFrom" at "
BurnableMintableCappedERC 20.sol™ ‘5.2.10 - Unvalidated amount in "refund" at "
Hilter GasService .sol™, ‘5.2.12 - Unvalidated amount in "payGasForContractCall ()", "
payGasForContractCallWithToken ()", and the "addGas ()" functions at "Hilter
GasService.sol™, '5.2.13 - Unvalidated amount in "collectfees" at "Hilter GasService.
sol™), facilitating user mistakes that could accidentally burn tokens, or
consume unnecessary gas, while emitting confusing events for front- end dapps.
Moreover, it was found that many functionalities of the Deposit Service replace
the receiving address with the "msg.sender" when the provided address is zero
(‘5.2.5-Insecure error handling of zero addresses at "ReceiverImplementation .sol”
and at "DepositReceiver.sol"™).

1.2.1 Retesting Results

Results from retesting carried out on August 2025, determined that four (4)
reported LOW-risk issues (see sections 5.2.13, 5.2.14, 5.2.15, 5.2.16) and one (1)
INFORMATIONAL issue (see sections 5.3.7)were sufficiently addressed (5 out of
28 findings).

7| Page

CHAINTROOPERS

1.3 Summary of Findings

The following findings were identified in the examined source code:

. Retest
Vulnerability Name Status Page
Status
No upper bound in one operator's weight at 15
"HilterAuthWeighted.sol"
No lower bound in threshold at 17
"HilterAuthWeighted.sol"
Excessive loop iterations allowed in 19
"setTokenDailyMintLimits" at “HilterGateway.sol"
Event not emitted in "burnToken" functionality at 22
"HilterGateway.sol"
Event not emitted in "mintToken" functionality at 27
"HilterGateway.sol"
Event not emitted in self functionality "collectFees()" at 33
"HilterGasService.sol"
Event not emitted in self functionality "refund()" at 36
"HilterGasService.sol"
Insecure error handling of zero addresses at
"ReceiverImplementation.sol" and at 39
"DepositReceiver.sol"
Lack of circuit breaker for emergency stop at 41
"HilterDepositService"
Lack of circuit breaker for emergency stop at 43
"HilterGateway"
Unvalidated amount in "_mintToken" at 46

"HilterGateway.sol"

8| Page

CHAINTROOPERS

Unvalidated amount in "burn" and "burnFrom" at

49
“BurnableMintableCappedERC20.sol"
Unvalidated amount in "refund" at 52
"HilterrGasService.sol"
No multisig protection in "util/upgradable.sol" 54
Unvalidated amount in "payGasForContractCall()",
"payGasForContractCallWithToken()", and the 57
"addGas()" functions at "HilterGasService.sol"
Unvalidated amount in "collectfees" at 61
"HilterGasService.sol"
Unvalidated address "receiver" in "collectFees" at 64
"HilterGasService.sol"
Unvalidated address "receiver" in "refund" at 66
"HilterGasService.sol"
Unvalidated address "recipient" in "withdrawNative" at 68
"HilterDepositService.sol"
Ownership can be transferred to same owner at 71
"Ownable.sol"
Lack of circuit breaker for emergency stop at 73
"HilterGasService"
Excessive loop iterations allowed in "setAdmins" at 75
"AdminMultisigBase.sol"
Excessive loop iterations allowed in "admins" at 78
"HilterGateway.sol"
Excessive loop iterations allowed in "collectFees" at 82
"HilterGasService.sol"

9| Page

CHAINTROOPERS

Excessive loop iterations allowed in "execute" at

. 85
“HilterGateway.sol"
No reentrancy protection in "execute" at 87
"DepositReceiver.sol"
Floating pragma in multiple interfaces at 89
"contracts/interfaces/" folder
Setup functionality can be circumvented during 91

contract upgrade at "/contracts/util/Upgradable.sol"

10| Page

CHAINTROOPERS

2 Assessment Description

2.1 Target Description

Hilter network's decentralized validators confirm events emitted on EVM chains

(such as deposit confirmation) and sign off on commands submitted (by
automated services) to the gateway smart contracts (such as minting token,

and approving message on the destination).

2.2 In-Scope Components

The components are located at the following URL:

https://gitlab.com/hilterltd-group/hilter-cgp-solidity

Component Commit Identifier

hilter-cgp-solidity 02dfea2e43b5d20af4c7bb0f6a2e7b045f
2ad8bc

hilter-cgp-solidity (v4.3.0) - Retest | 5614e209441c2f4e1b905e2746c94af206
Version 7169bc

M| Page

CHAINTROOPERS

3 Methodology

3.1 Assessment Methodology

Chaintroopers’ methodology attempts to bridge the penetration testing and
source code reviewing approaches in order to maximize the effectiveness of a
security assessment.

Traditional pentesting or source code review can be done individually and can
yield great results, but their effectiveness cannot be compared when both
techniques are used in conjunction.

In our approach, the application is stress tested in all viable scenarios though
utilizing penetration testing techniques with the intention to uncover as many
vulnerabilities as possible. This is further enhanced by reviewing the source code
in parallel to optimize this process.

When feasible our testing methodology embraces the Test-Driven Development
process where our team develops security tests for faster identification and
reproducibility of security vulnerabilities. In addition, this allows for easier
understanding and mitigation by development teams.

Chaintroopers’ security assessments are aligned with OWASP TOP10 and NIST
guidance.

This approach, by bridging penetration testing and code review while bringing the
security assessment in a format closer to engineering teams has proven to be
highly effective not only in the identification of security vulnerabilities but also in
their mitigation and this is what makes Chaintroopers’ methodology so unique.

3.2 Smart Contracts

The testing methodology used is based on the empirical study “Defining Smart
Contract Defects on Ethereum” by J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo and T.
Chen, in IEEE Transactions on Software Engineering, and the security best
practices as described in “Security Considerations” section of the solidity wiki.

12| Page

CHAINTROOPERS

The following is a non-exhaustive list of security vulnerabilities that are identified
by our methodology during the examination of the in-scope contract:

» Unchecked External Calls

= Strict Balance Equality

» Transaction State Dependency

» Hard Code Address

= Nested Call

» Unspecified Compiler Version

» Unused Statement

= Missing Return Statement

» Missing Reminder

» High Gas Consumption Function Type
» DoS Under External Influence

» Unmatched Type Assignment

= Re-entrancy

» Block Info Dependency

» Deprecated APIs

» Misleading Data Location

» Unmatched ERC-20 standard

= Missing Interrupter

» Greedy Contract

» High Gas Consumption Data Type

In Substrate Pallets, the list of vulnerabilities that are identified also includes:

= Static or Erroneously Calculated Weights
» Arithmetic Overflows

» Unvalidated Inputs

* Runtime Panic Conditions

» Missing Storage Deposit Charges

*» Non-Transactional Dispatch Functions

» Unhandled Errors &Unclear Return Types
» Missing Origin Authorization Checks

13| Page

CHAINTROOPERS

4 Scoring System

4.1 CVSS

All issues identified as a result of Chaintroopers’ security assessments are
evaluated based on Common Vulnerability Scoring System version 3.1.

With the use of CVSS, taking into account a variety of factors a final score is
produced ranging from 0 up to 10. The higher the number goes the more critical
an issueis.

The following table helps provide a qualitative severity rating:

Rating CVSS Score
None/Informational 0.0

Low 0.1-3.9
Medium 4.0-6.9
High 7.0-8.9
Critical 9.0-10.0

Issues reported in this document contain a CVSS Score section, this code is
provided as an aid to help verify the logic of the team behind the evaluation of a
said issue.

14 | Page

CHAINTROOPERS

5 Identified Findings

5.1 Medium Severity Findings

5.1.1No upper bound in one operator's weight at "HilterAuthWeighted.sol

Description MEDIUM

The team identified that no upper bound is set for the provided weight for an
operator at the "_transferOwnership" functionality. In general, the auth
contract verifies that the received commands are signed by a weighted set of
operator keys. It also performs transfers of operatorships (to mimic changes
to the validator set of Hilter Proof-of-Stake network). However, it was found
that the transfers of operatorships do not validate if the weight of an
operator is excessive or even more than the required newThreshold.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/auth/HilterAuthWeighted.sol
70: uint256 totalWeight = O0;

71: for (uint256 i = 0; i < weightsLength; ++1i) {
72 totalWeight += newWeights([i];

73: }

74 :

Recommendation

It is recommended to validate that the weight of each operator does not
exceed an accepted fraction of the newThreshold.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR: XIMAV: X/MAC: X/MPR: X/M
ULXIMS:X/IMC:X/MI:XIMA: X

15| Page

CHAINTROOPERS

5.1.2 No lower bound in threshold at "HilterAuthWeighted.sol"

The team identified that no lower bound is set for the provided new threshold
for a set of operators at the "_transferOwnership" functionality. In general, the
auth contract verifies that the received commands are signed by a weighted
set of operator keys. It also performs transfers of operatorships (to mimic
changes to the validator set of Hilter Proof-of-Stake network). However, it
was found that the transfers of operatorships do not validate if the required
newThreshold is at least greater than the maximum weight that has been
provided for one of the operators. For example, it is possible to provide a
newThreshold that will be just 1, allowing any operator with weight greater
than 0O to execute arbitrary commands and compromise the gateway.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/auth/HilterAuthWeighted.sol

70: uint256 totalWeight = O0;

71: for (uint256 i = 0; i < weightsLength; ++1i) {

72 totalWeight += newWeights[i];

73: }

74 : if (newThreshold == 0 || totalWeight < newThreshold) revert
InvalidThreshold() ;

75:

Recommendation

It is recommended to validate that the newThresold is at least greater than the
maximum weight that has been provided for one of the operators.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR: XIMAV: X/MAC:X/MPR:X/M
ULX/IMS:X/MC:X/MI:XIMA:X

16 |Page

CHAINTROOPERS

5.1.3 Excessive loop iterations allowed in "setTokenDailyMintLimits" at
"HilterGateway.sol"

It was identified that the external function "setTokenDailyMintLimits", which
can be called only by administrators, contains a potentially costly loop.
Computational power on blockchain environments is paid, thus reducing the
computational steps required to complete an operation is not only a matter
of optimization but also cost efficiency. Loops are a great example of costly
operations: as many elements an array has, more iterations will be required
to complete the loop.

Excessive loop iterations exhaust all available gas.

In the specific case, the function "setTokenDailyMintLimits" iterates over the
arrays "symbols" and "limits" which are provided as arguments and are of
unspecified length:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

204: function setTokenDailyMintLimits (string[] calldata symbols,
uint256[] calldata limits) external override onlyAdmin {
205: if (symbols.length != 1limits.length) revert

InvalidSetDailyMintLimitsParams () ;

206:

207: for (uint256 i = 0; i < symbols.length; i++) {

208: string memory symbol = symbols[i];

209: uint256 limit = limits[i];

210:

211: if (tokenAddresses (symbol) == address(0)) revert

TokenDoesNotExist (symbol) ;

212:

213: _setTokenDailyMintLimit (symbol, limit);
214: }

215¢ }

17 | Page

CHAINTROOPERS

In case that the Administrator decides to apply specific limits to a large array
of symbols, it is possible that the operation will fail due to the max gas
consumption on the current block. A failed change in the limits will allow
adversaries who monitor the transactions to identify the requested action and
use front running to circumvent the limitation before it is applied in the
following blocks. Furthermore, the Administrator will have to submit the
action in smaller batches to be able to execute it, allowing the adversaries to
still circumvent the limits in the remaining symbols.

If it is necessary to loop over an array of unknown size, the function should
be able to execute the operation in multiple blocks and in multiple

transactions . In that case, it will be required to maintain the extra state of
how many iterations have already been performed to continue from that
point in the next function call. In case that there is no requirement to loop
over an array of unknown size, it is advisable to modify the functionality to

always verify that the provided symbols array does not exceed an upper limit
to prevent a failure in the update operation.

AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L/E:F/RL:X/RC:C/CR: X/IR:X/AR: X/IMAV: XIMAC: X/MPR: X/MUI
XIMS: XIMC:XIMIEXIMA: X

18| Page

CHAINTROOPERS

5.2 Low Severity Findings

5.2.1 Event not emitted in "burnToken" functionality at "HilterGateway.sol"

It was identified that the admin command "burnToken" does not emit an event
with the exact amount when an external token is used. A contract can emit
events when it wants to notify external entities like users, chain explorers, or
dApps about changes or conditions in the blockchain. When an event is emitted,
it stores the arguments passed in transaction logs. These logs are stored on
blockchain and are accessible using address of the contract till the contract is
present on the blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

373: function burnToken (bytes calldata params, bytes32) external
onlySelf {
374: (string memory symbol, bytes32 salt) = abi.decode(params,

(string, bytes32));

375:

376: address tokenAddress = tokenAddresses (symbol) ;

377:

378: if (tokenAddress == address (0)) revert

TokenDoesNotExist (symbol) ;

379:

380: if (_getTokenType (symbol) == TokenType.External) {

381: DepositHandler depositHandler = new DepositHandler{ salt:
salt }();

382:

383: (bool success, bytes memory returnData) =

depositHandler.execute (

384: tokenAddress,

385: abi.encodeWithSelector (IERC20.transfer.selector,
address (this), IERC20 (tokenAddress) .balanceOf (address (depositHandler)))
386:)

387:

19| Page

CHAINTROOPERS

388: if (!success || (returnData.length != uint256(0) &&
'abi.decode (returnData, (bool)))) revert BurnFailed (symbol) ;

389:

390: // NOTE: “depositHandler' must always be destroyed in the

same runtime context that it is deployed.

391: depositHandler.destroy (address (this)) ;

392: } else {

393: IBurnableMintableCappedERC20 (tokenAddress) .burn (salt) ;
394: }

395: }

The admin command is parsed at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute (bytes calldata input) external override {

263: (bytes memory data, bytes memory proof) = abi.decode (input,
(bytes, bytes));

264:

265: bytes32 messageHash
ECDSA.toEthSignedMessageHash (keccak256 (data)) ;

266:
267: // TEST auth and getaway separately
268: bool currentOperators =

IHilterAuth (AUTH MODULE) .validateProof (messageHash, proof);
269:

270: uint256 chainId;

271: bytes32[] memory commandIds;

272: string[] memory commands;

273: bytes[] memory params;

274 :

275: try HilterGateway (this) . unpackLegacyCommands (data) returns (
276: uint256 chainId ,

277: bytes32[] memory commandIds ,

278: string[] memory commands ,

279: bytes[] memory params_

280:) A

281: (chainId, commandIds, commands, params) = (chainId ,
commandIds , commands , params) ;

282: } catch {

20 | Page

CHAINTROOPERS

283: (chainId, commandIds, commands, params) = abi.decode (data,
(uint256, bytes32[], string[], bytes[])):

284 : }

285:

286: if (chainId !'= block.chainid) revert InvalidChainId();

287:

288: uint256 commandsLength = commandIds.length;

289:

290: if (commandsLength != commands.length || commandsLength !=

params.length) revert InvalidCommands () ;

291:

292: for (uint256 i; 1 < commandsLength; ++i) {

293: bytes32 commandId = commandIds([i];

294:

295: if (isCommandExecuted (commandId)) continue; /* Ignore 1if

duplicate commandId received */

296:

297: bytes4 commandSelector;

298: bytes32 commandHash =

keccak256 (abi.encodePacked (commands [i])) ;

299:

300:

308: } else if (commandHash == SELECTOR_BURN TOKEN) {

309: commandSelector = HilterGateway.burnToken.selector;
310:

If the internal token implementation is used, then the burn function of the
"BurnableMintableCappedERC20" will be called, which indeed will emit an event
as part of the open zeppelin ERC20 implementation:

File: /hilter-cgp-solidity/contracts/BurnableMintableCappedERC20.so0l

34: function burn(bytes32 salt) external onlyOwner {
35: address account = depositAddress(salt);

36: _burn (account, balanceOf[account]);

37 s }

21| Page

CHAINTROOPERS

File: /hilter-cgp-solidity/contracts/ERC20.sol

200: * Emits a {Transfer} event with "to’ set to the zero address.
201: =

202: * Requirements:

203: *

204: * — Taccount cannot be the zero address.

205: * - “account’ must have at least “amount’ tokens.

206: WY

207: function _burn(address account, uint256 amount) internal virtual
{

208: if (account == address(0)) revert InvalidAccount();

209:

210: _beforeTokenTransfer (account, address(0), amount);

211:

212: balanceOf [account] -= amount;

213: totalSupply -= amount;

214: emit Transfer (account, address(0), amount);

215: }

However, in case that an external token implementation is used, it is possible
that no event regarding the exact minted amount will be emitted. Currently, the
DepositHandler implementation is the following and emits no event:

File: /hilter-cgp-solidity/contracts/DepositHandler.sol
22 function execute (address callee, bytes calldata data) external

noReenter returns (bool success, bytes memory returnData) ({

23: if (callee.code.length == 0) revert NotContract();
24: (success, returnData) = callee.call (data);
25¢ }

On the other hand, an event about the successful execution of the command
will be emitted by the "execute" functionality:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol
292: for (uint256 i; i < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

22 |Page

CHAINTROOPERS

294:

295:

317:

320: (bool success,) =
address (this) .call (abi.encodeWithSelector (commandSelector, params[i],
commandId)) ;

321:

322: if (success) emit Executed (commandId) ;

323: else setCommandExecuted (commandId, false);

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR:X/MAV:X/MAC: X/MPR:X/MU
[:XIMS:XIMC:XIMIEXIMA: X

23 | Page

CHAINTROOPERS

5.2.2 Event not emitted in "mintToken" functionality at "HilterGateway.sol"

It was identified that the admin command "mintToken" does not emit an event
with the exact amount when an external token is used. A contract can emit
events when it wants to notify external entities like users, chain explorers, or
dApps about changes or conditions in the blockchain. When an event is emitted,
it stores the arguments passed in transaction logs. These logs are stored on
blockchain and are accessible using address of the contract till the contract is
present on the blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

465: function mintToken (

466: string memory symbol,

467 : address account,

468: uint256 amount

469:) internal {

470: address tokenAddress = tokenAddresses (symbol) ;

471 :

472 if (tokenAddress == address (0)) revert

TokenDoesNotExist (symbol) ;

473:

474 : _setTokenDailyMintAmount (symbol, tokenDailyMintAmount (symbol)
+ amount) ;

475:

476: if (_getTokenType (symbol) == TokenType.External) ({

477 2 bool success = _callERC20Token (tokenAddress,

abi.encodeWithSelector (IERC20.transfer.selector, account, amount));

478 :

479: if (!success) revert MintFailed (symbol) ;

480: } else {

481 : IBurnableMintableCappedERC20 (tokenAddress) .mint (account,
amount) ;

482: }

483: }

24 |Page

CHAINTROOPERS

Which is called by:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

366:

367: function mintToken (bytes calldata params, bytes32) external
onlySelf {

368: (string memory symbol, address account, uint256 amount) =
abi.decode (params, (string, address, uint256));

369:

370: _mintToken (symbol, account, amount);

371: }

372:

The admin command is parsed at the following location:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute (bytes calldata input) external override ({

263: (bytes memory data, bytes memory proof) = abi.decode (input,
(bytes, bytes));

264:

265: bytes32 messageHash =
ECDSA.toEthSignedMessageHash (keccak256 (data)) ;

266:
267: // TEST auth and getaway separately
268: bool currentOperators =

IHilterAuth (AUTH MODULE) .validateProof (messageHash, proof);
269:

270: uint256 chainId;

271: bytes32[] memory commandIds;

272 string[] memory commands;

273: bytes|[] memory params;

274:

275: try HilterGateway (this). unpackLegacyCommands (data) returns
276: { uint256 chainId ,

277 : bytes32[] memory commandIds ,
278: string[] memory commands ,
279: bytes[] memory params

280:) |

25 | Page

CHAINTROOPERS

281: (chainId, commandIds, commands, params) = (chainId ,
commandIds , commands , params) ;

282: } catch {

283: (chainId, commandIds, commands, params) = abi.decode (data,
(uint256, bytes32[], string[], bytes[])):

284: }

285:

286: if (chainId !'= block.chainid) revert InvalidChainId();

287:

288: uint256 commandsLength = commandIds.length;

289:

290: if (commandsLength != commands.length || commandsLength !=

params.length) revert InvalidCommands () ;

291:

292: for (uint256 i; 1 < commandsLength; ++i) {

293: bytes32 commandId = commandIds[i];

294:

295: if (isCommandExecuted (commandId)) continue; /* Ignore if

duplicate commandId received */

296:

297: bytes4 commandSelector;

298: bytes32 commandHash =
keccak256 (abi.encodePacked (commands([i])) ;

299:

300:

302: } else if (commandHash == SELECTOR_MINT TOKEN) {

303: commandSelector = HilterGateway.mintToken.selector;
310:

312:

If the internal token implementation is used, then the mint function of the
"MintableCappedERC20" will be called, which indeed will emit an event as part
of the open zeppelin ERC20 implementation:

File: /hilter-cgp-solidity/contracts/MintableCappedERC20.sol
23: function mint (address account, uint256 amount) external onlyOwner

{
24 uint256 capacity = cap;

26 | Page

CHAINTROOPERS

25:

26: _mint (account, amount);

27:

28: if (capacity == 0) return;

29:

30: if (totalSupply > capacity) revert CapExceeded();
31: }

File: /hilter-cgp-solidity/contracts/ERC20.sol

177: /** @dev Creates ‘amount tokens and assigns them to “account’,
increasing

178: * the total supply.

179: =

180: * Emits a {Transfer} event with "from set to the zero address.
181: *

182: * Requirements:

183: =

184: * - “to’ cannot be the zero address.

185: */

186: function _mint(address account, uint256 amount) internal virtual
{

187: if (account == address (0)) revert InvalidAccount();

188:

189: _beforeTokenTransfer (address (0) , account, amount);

190:

191: totalSupply += amount;

192: balanceOf [account] += amount;

193: emit Transfer (address(0), account, amount);

194: }

However, in case that an external token implementation is used, it is possible
that no event regarding the exact minted amount will be emitted.

27 |Page

CHAINTROOPERS

On the other hand, an event about the successful execution of the command
will be emitted by the "execute" functionality:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

292: for (uint256 i; i < commandsLength; ++1) {

293: bytes32 commandId = commandIds([i];

294:

295:

317:

320: (bool success,) =
address (this) .call (abi.encodeWithSelector (commandSelector, params[i],
commandId)) ;

321:

322: if (success) emit Executed (commandId) ;

323: else setCommandExecuted (commandId, false);

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV:X/MAC: X/MPR: X/MUI:
XIMS:X/MC: X/MI:XIMA: X

28 | Page

CHAINTROOPERS

5.2.3 Event not emitted in self functionality "collectFees()" at
"HilterGasService.sol"

It was identified that the admin command "collectFees" does not emit an event
when the native token is selected. A contract can emit events when it wants to
notify external entities like users, chain explorers, or dApps about changes or
conditions in the blockchain. When an event is emitted, it stores the arguments
passed in transaction logs. These logs are stored on blockchain and are
accessible using address of the contract till the contract is present on the
blockchain

The issue exists at the following location:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:
function collectFees (address payable receiver, address[] calldata tokens)

external onlyOwner ({

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer (address (this) .balance) ;
128: } else {

129: uint256 amount = IERC20 (token) .balanceOf (address (this));
130: _safeTransfer (token, receiver, amount);
131: }

132: }

133: }

And the "_safeTransfer()" will be:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer (
148: address tokenAddress,
149: address receiver,
150: uint256 amount

29 |Page

CHAINTROOPERS

151:) internal {

152: (bool success, bytes memory returnData) =
tokenAddress.call (abi.encodeWithSelector (IERC20.transfer.selector,
receiver, amount));

153: bool transferred = success && (returnData.length == uint256(0)
| | abi.decode (returnData, (bool))):;

154:

155: if (!transferred || tokenAddress.code.length == 0) revert
TransferFailed () ;

156: }

157:

If the IERC20 token implementation is used, then the "transfer" selector will be
called, which will probably emit an event as part of the ERC20 implementation.
However, if the ADDRESS_ZERO is used, and the native token is selected, no
event will be emitted.

For example, the following test can be used:

const destinationChain = 'ethereum';
const destinationAddress = ownerWallet.address;
const payload = defaultAbiCoder.encode (['address', 'address'],

[ownerWallet.address, userWallet.address]);

const symbol = 'USDC';

const amount =0;

const gasToken = testToken.address;

const gasFeeAmount = 0;

const nativeGasFeeAmount =0;

await testToken.connect (userWallet) .approve (gasService.address, 0);
await

expect (gasService.connect (ownerWallet) .collectFees (ownerWallet.address,

[ADDRESS ZERO])) .to.emit (testToken, 'Transfer');

And the output will be:

AssertionError: Expected event "Transfer" to be emitted, but it wasn't

30| Page

CHAINTROOPERS

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV: X/MAC: X/MPR:X/MU
I: XIMS: X/MC: X/MI: X/IMA: X

31| Page

CHAINTROOPERS

5.2.4 Event not emitted in self functionality "refund()" at
"HilterGasService.sol"

It was identified that the admin command "refund" does not emit an event,
when the native token is selected. A contract can emit events when it wants to
notify external entities like users, chain explorers, or dApps about changes or
conditions in the blockchain. When an event is emitted, it stores the arguments
passed in transaction logs. These logs are stored on blockchain and are
accessible using address of the contract till the contract is present on the
blockchain

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund(

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner ({

140: if (token == address(0)) {
141: receiver. transfer (amount) ;
142: } else {

143: _safeTransfer (token, receiver, amount);
144 : }

145: }

And the " _safeTransfer()" will be:

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer (
148: address tokenAddress,
149: address receiver,
150: uint256 amount

151:) internal {

32| Page

CHAINTROOPERS

152: (bool success, bytes memory returnData) =
tokenAddress.call (abi.encodeWithSelector (IERC20.transfer.selector,
receiver, amount));

153: bool transferred = success && (returnData.length == uint256(0)
| | abi.decode (returnData, (bool)));

154:

155: if (!transferred || tokenAddress.code.length == 0) revert
TransferFailed() ;

156: }

157:

If the IERC20 token implementation is used, then the "transfer" selector will be
called, which will probably emit an event as part of the ERC20 implementation.
However, if the ADDRESS_ZERO is used, and the native token is selected, no
event will be emitted.

For example, the following test can be used:

const destinationChain = 'ethereum';
const destinationAddress = ownerWallet.address;
const payload = defaultAbiCoder.encode (['address', 'address'],

[ownerWallet.address, userWallet.address]);

const symbol = 'USDC';

const amount = 0;

const gasToken = testToken.address;
const gasFeeAmount = 0;

const nativeGasFeeAmount = 0;

await testToken.connect (userWallet) .approve (gasService.address, 0);

await expect(await
gasService.connect (ownerWallet) .refund(userWallet.address, ADDRESS ZERO,
0x0)) .and.to.emit (testToken, 'Transfer') .withArgs (gasService.address,

userWallet.address, 0x0);

And the output will be:

33| Page

CHAINTROOPERS

AssertionError: Expected event "Transfer" to be emitted, but it wasn't

Recommendation

It is recommended to emit an event related to this functionality.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/IMAV:X/MAC: X/MPR: X/MU
I XIMS: X/IMC: X/MI: X/IMA: X

34| Page

CHAINTROOPERS

5.2.5 Insecure error handling of zero addresses at
"Receiverimplementation.sol" and at "DepositReceiver.sol”

The team identified that the "receiveAndSendToken()",

"receiveAndSendNative()", "receiveAndUnwrapNative()" functions of

Receiverimplementation and the constructor of DepositReceiver, replace the "
refundAddress " with the "msg.sender" when the provided refundAddress is
zero. In general, the contract is deployed by the HilterDepositService .sol to act
as the recipient address for the cross-chain transfer. When tokens arrive here,
it calls the Receiverimplementation .sol method to forward the tokens to the
user, auto-unwrapping if necessary. While the validation of the "refundAddress"
parameter is implemented correctly, the error handling is insecure, since the
msg.sender might not be able to handle the incoming tokens, especially if
instead of an EOA, a contract address is used. In a worst-case scenario, the
caller contract logic might lock the incoming funds.

The issue exists in the following locations:

» contracts/deposit-service/Receiverimplementation.sol:27:

if (refundAddress == address(0)) refundAddress = msg.sender;
» contracts/deposit-service/Receiverimplementation.sol:52:

if (refundAddress == address(0)) refundAddress = msg.sender;
» contracts/deposit-service/Receiverimplementation.sol:77:

if (refundAddress == address(0)) refundAddress = msg.sender;
» contracts/deposit-service/DepositReceiver.sol:25: if (

refundAddress == address(0)) refundAddress = msg.sender;

Since the external functionalities are mainly designed to be used by the
upgradable HilterDepositService, the issue is marked as LOW.

35| Page

CHAIN TROOPERS
Recommendation

It is advisable to verify that the address is not the zero address and then revert
the transaction

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented
with a simple check:

if (refundAddress == address (0)) revert RefundFailed();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:L/E:P/RL:X/RC:C/CR:X/IR: X/AR:XIMAV:X/MAC: X/IMPR:X/MU
XIMS: XIMC:XIMI:XIMA: X

36 | Page

CHAINTROOPERS

5.2.6 Lack of circuit breaker for emergency stop at "HilterDepositService"

Description LOow

It was identified that the "HilterDepositService " does not support a circuit
breaker control. A circuit breaker, also referred to as an emergency stop, can
stop the execution of functions inside the smart contract. A circuit breaker can
be triggered manually by trusted parties included in the contract like the
contract admin or by using programmatic rules that automatically trigger the
circuit breaker when the defined conditions are met. Applying the Emergency
Stop pattern to a contract adds a fast and reliable method to halt any sensitive
contract functionality as soon as a bug or another security issue is discovered.
This leaves enough time to weigh all options and possibly upgrade the
contract to fix the security breach.

However, it should be noted that the negative consequence of having an
emergency stop mechanism from a user's point of view is, that it adds
unpredictable contract behavior.

Recommendation

It is advisable to add a circuit breaker. For example, the following code can be
used to set a modifier:

bool public contractPaused = false;

function circuitBreaker () public onlyOwner { // onlyOwner can call
if (contractPaused == false) { contractPaused = true; }
else { contractPaused = false; }

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require (contractPaused == false);

2

37 | Page

CHAINTROOPERS

And then:

function execute (
DepositReceiver depositReceiver,
address callee,
uint256 nativeValue,
bytes memory payload

) internal checkIfPaused returns (bool)

This approach is similar to openzeppelin pausable contract which can be found
in the following URL:

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/security/Pausable.sol

In both cases, a multisig Owner address must be used to ensure a
decentralization strategy.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L/E:P/RL:X/RC:C/CR:X/IR:X/AR:XIMAV: X/MAC: X/MPR:X/MU
I XIMS: XIMC:X/MI:XIMA: X

38| Page

CHAINTROOPERS

5.2.7 Lack of circuit breaker for emergency stop at "HilterGateway"

It was identified that the "HilterGateway " does not support a circuit breaker
control. A circuit breaker, also referred to as an emergency stop, can stop the
execution of functions inside the smart contract. A circuit breaker can be
triggered manually by trusted parties included in the contract like the contract
admin or by using programmatic rules that automatically trigger the circuit
breaker when the defined conditions are met. Applying the Emergency Stop
pattern to a contract adds a fast and reliable method to halt any sensitive
contract functionality as soon as a bug or another security issue is discovered.
This leaves enough time to weigh all options and possibly upgrade the contract
to fix the security breach.

Currently, the only way for the admins to halt the transactions is to lower the
daily limit to zero. However, this control requires excessive resources, as it will
have to be enforced on each affected symbol instead of a global variable, and
as a result may not be able to be enforced on time.

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

204: function setTokenDailyMintLimits(string[] calldata symbols,
uint256[] calldata limits) external override onlyAdmin {

205: if (symbols.length != limits.length) revert

InvalidSetDailyMintLimitsParams () ;

206:

207 : for (uint256 i = 0; i < symbols.length; i++) {

208: string memory symbol = symbols[i];

209: uint256 limit = limits([i];

210:

211: if (tokenAddresses(symbol) == address(0)) revert

TokenDoesNotExist (symbol) ;
212:
213: _setTokenDailyMintLimit (symbol, limit);

214: }
215: }

39 | Page

CHAINTROOPERS

However, it should be noted that the negative consequence of having an
emergency stop mechanism from a user's point of view is, that it adds
unpredictable contract behavior.

It is advisable to add a circuit breaker. For example, the following code can be
used to set a modifier:

bool public contractPaused = false;

function circuitBreaker () public onlyOwner { // onlyOwner can call
if (contractPaused == false) { contractPaused = true; }
else { contractPaused = false; }

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require (contractPaused == false);
}
And then:

function sendToken (
string calldata destinationChain,
string calldata destinationAddress,
string calldata symbol,
uint256 amount

) external checkIfPaused

This approach is similar to openzeppelin pausable contract which can be found
in the following URL:

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/security/Pausable.sol

In both cases, a multisig Owner address must be used to ensure a
decentralization strategy.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L/E:P/IRL:X/RC:C/CR:X/IR:XIAR: XIMAV:X/MAC: X/MPR: X/MU
[XIMS:XIMC:XIMEEXIMA:X

40 | Page

CHAINTROOPERS

5.2.8 Unvalidated amount in "_mintToken" at "HilterGateway.sol"

It was identified that internal function "_mintToken" does not ensure that the
mint amount is non-zero. Although minting zero tokens is an operation that will
neither modify the state of the contract nor produce any results, it will spend
the gas the user has provided. Furthermore, it may emit the corresponding
event, depending on the ERC20 token's implementation.

The internal function "_mintToken" is called by the admin function "mintToken"
and the external function "validateContractCallAndMint", which also do not
ensure that the mint amount is non-zero. These external functions are called
with operator supplied input data as part of the command execution
functionality.

File: hilter-cgp-solidity/contracts/HilterGateway.sol

465: function _mintToken (

466: string memory symbol,

467 : address account,

468: uint256 amount

469:) internal {

470: address tokenAddress = tokenAddresses (symbol) ;

471:

472 if (tokenAddress == address (0)) revert

TokenDoesNotExist (symbol) ;
473:
474 : _setTokenDailyMintAmount (symbol, tokenDailyMintAmount (symbol)

+ amount) ;

475:
476: if (_getTokenType (symbol) == TokenType.External) {
477 : bool success = _callERC20Token (tokenAddress,

abi.encodeWithSelector (IERC20. transfer.selector, account, amount));

478:

479: if (!success) revert MintFailed (symbol) ;

480: } else {

481: IBurnableMintableCappedERC20 (tokenAddress) .mint (account,
amount) ;

482 : }

41 | Page

CHAINTROOPERS

483: }

For example, the following test case will succeed:

it('mint tokens with zero amount', async () => {
const amount = 0;
const zeroMintData = buildCommandBatch (
CHAIN ID,
[getRandomID ()],
['mintToken'],
[getMintCommand (symbol, owner.address, amount)],
) ;
const zeroMintInput = await
getSignedMultisigExecutelInput (zeroMintData,
threshold)) ;

operators, operators.slice (O,

await expect (gateway.execute (zeroMintInput)) .to.emit (gateway,

'Executed’') ;
Y

And the output will be:

command mintToken

v mint tokens with zero amount

Recommendation

It is recommended to verify that the mint amount is greater than zero.

The functions "assert" and "require" can be used to check for conditions and

throw an exception if the condition is not met. The control can also be
implemented with a simple check:

if (amount == 0) revert InvalidAmount () ;

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:XIMAV:X/MAC: X/MPR:X/MU
[XIMS:XIMC:X/MI:XIMA:X

42 |Page

CHAINTROOPERS

5.2.9 Unvalidated amount in "burn" and "burnFrom" at
"BurnableMintableCappedERC20.sol"

It was found that the "amount" in external function "burnFrom()" and the
"balanceOf[account]" in external "burn()" is not validated to be non-zero.
Although burning zero tokens is an operation that will neither modify the state
of the contract nor produce any results, it will spend the gas the user has
provided. Furthermore, it is possible to burn zero tokens from any account and
emit the corresponding event, since and the default allowance for all accounts
is zero and the corresponding check will succeed.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/BurnableMintableCappedERC20.s0l 39:

function burnFrom(address account, uint256 amount) external onlyOwner {

40: uint256 allowance = allowance[account] [msg.sender];

41 : if (_allowance != type(uint256) .max) ({

42: _approve (account, msg.sender, allowance - amount);
43: }

44 . _burn (account, amount);

45: }

It should be noted that when the functions are called from the HilterGateway,
only the "burn()" can be exploited, as the "_burnTokenFrom()" which calls the "
burnFrom()" already contains a such security control as it can be seen below:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

485: function _burnTokenFrom (

486: address sender,

487 : string memory symbol,

488: uint256 amount

489:) internal {

490: address tokenAddress = tokenAddresses (symbol) ;
491:

43 |Page

CHAINTROOPERS

492: if (tokenAddress == address (0)) revert
TokenDoesNotExist (symbol) ;

493: if (amount == 0) revert InvalidAmount() ;

494 :

The following test case can be used to replicate this issue:

const burnAmount = 0;

await token.transfer (depositHandlerAddress, burnAmount) ;

const dataFirstBurn = buildCommandBatch (CHAIN ID, [getRandomID()],
['"burnToken'], [getBurnCommand (symbol, salt)]);

const firstInput = await getSignedMultisigExecutelInput (dataFirstBurn,
operators, operators.slice (0, threshold));

await expect(gateway.execute (firstInput)) .to.emit(token,

'Transfer') .withArgs (depositHandlerAddress, ADDRESS_ ZERO, burnAmount) ;

And the output will be:

command burnToken

v able to burn zero tokens

It is advisable to verify that the amount is not zero.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented
with a simple check.

In burn():
if (balanceOf[account] == 0) revert InvalidAmount () ;
In burnFrom():

if (amount == 0) revert InvalidAmount () ;

44 |Page

CHAIN TROOPERS
CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/IMAV:X/MAC: X/MPR: X/MU
I XIMS: X/IMC: X/MI: X/IMA: X

45 | Page

CHAINTROOPERS

5.2.10 Unvalidated amount in "refund” at "HilterGasService.sol"

It was found that the "amount" in the external function "refund" is not validated
to be non-zero. Although requesting a refund of zero tokens is an operation that
will neither modify the state of the contract nor produce any results, it will spend
the gas the user has provided. Furthermore, it may be possible to transfer zero
tokens from the Gas Service and emit the corresponding event even though the
user is not eligible for a refund, depending on the ERC20 token's
implementation.

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund/(

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner ({

140: if (token == address(0)) {
141: receiver.transfer (amount) ;
142: } else {

143: _safeTransfer (token, receiver, amount);
144 : }

145: }

The following test case can be used to replicate the issue:

await expect (await
gasService.connect (ownerWallet) . refund (userWallet.address,
testToken.address, 0x0))

.and.to.emit (testToken, 'Transfer')

.withArgs (gasService.address, userWallet.address, 0x0) ;

And the output would be:

46 |Page

CHAINTROOPERS

gas receiver

v refund zero amount

Recommendation

It is advisable to verify that the amount is not zero.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented

with a simple check:

if (amount == 0) revert InvalidAmount () ;

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV:X/MAC:X/MPR: X/MU
:XIMS: X/MC:X/MI:X/MA: X

47 |Page

CHAINTROOPERS

5.2.11 No multisig protection in "util/upgradable.sol"

The team identified that the admin role (owner) of the "util/upgradable.sol"
contract is not protected with multisig. Smart contracts have privileged roles
that are responsible to perform operations such as minting, pausing, and
upgrading, which are necessary in the lifecycle of a project. The best practice for
securing admin accounts is to use a multisig. A multisig is a contract that can
execute actions, as long as a predefined number of trusted members agree
upon it. A multisig has a number of owners (N) and requires some of them (M)
to approve a transaction. This configuration is referred to as M of N.

In the specific case, the admin role (owner) of the contract is responsible for
transferring the ownership of the contract and upgrading the contract:

File: hilter-cgp-solidity/contracts/util/Upgradable.sol
25: function transferOwnership(address newOwner) external virtual

onlyOwner {

32: }

41: function upgrade (

42: address newImplementation,

43: bytes32 newImplementationCodeHash,
44 bytes calldata params

45:) external override onlyOwner {

59: }

However, the team identified that the owner is verified only by comparing the
msg.sender with a stored address in the storage slot:

File: hilter-cgp-solidity/contracts/util/Upgradable.sol

11: bytes32 internal constant _OWNER SLOT =
0x02016836a56b71£0d02689¢69e326£4f4c1b9057164e£592671c£0d37c8040c0;

12:

13: modifier onlyOwner () {

48 | Page

CHAINTROOPERS

14: if (owner() != msg.sender) revert NotOwner() ;

15: i

16: }

17:

18: function owner() public view returns (address owner_) {
19: // solhint-disable-next-line no-inline-assembly

20: assembly {

21: owner := sload(OWNER SLOT)

22: }

238 }

File: hilter-cgp-solidity/contracts/deposit-

service/HilterDepositService.sol
11:
12: // This should be owned by the microservice that is paying for gas.

13: contract HilterDepositService is Upgradable, IHilterDepositService {

Recommendation

It is advisable to protect the owner functions of the upgradable contract with
multisig.

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:X/MPR:X/MU
I XIMS: XIMC:X/MI:XIMA: X

49 |Page

CHAINTROOPERS

5.2.12 Unvalidated amount in "payGasForContractCall()",
"payGasForContractCallWithToken()", and the "addGas()" functions at

"HilterGasService.sol"

It was found that the "amount" in the external function "_safeTransferFrom" is
not validated to be non-zero. The function is currently used by the
"payGasForContractCall()", "payGasForContractCallWithToken()", and the
"addGas()" external functions. Although transferring zero tokens is an operation
that will neither modify the state of the contract nor produce any results, it will
spend the gas the user has provided. Furthermore, it may be possible to transfer
zero tokens from any account and emit the corresponding event, depending on
the ERC20 token's implementation.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

158: function _safeTransferFrom(

159¢ address tokenAddress,

160: address from,

161: uint256 amount

162:) internal {

163: (bool success, bytes memory returnData) = tokenAddress.call (
164: abi.encodeWithSelector (IERC20.transferFrom.selector, from,
address (this), amount)

165:)

166: bool transferred = success && (returnData.length == uint256(0)

| | abi.decode (returnbData, (bool)));

167:

168: if (!transferred || tokenAddress.code.length == 0) revert
TransferFailed () ;

169: }

Currently, the "_safeTransferFrom" is called from a number of external
functions. The "payGasForContractCall()":

50 | Page

CHAINTROOPERS

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol
11: // This is called on the source chain before calling the gateway

to execute a remote contract.

12: function payGasForContractCall (

13: address sender,

14: string calldata destinationChain,

15: string calldata destinationAddress,

16: bytes calldata payload,

17: address gasToken,

18: uint256 gasFeeAmount,

19s address refundAddress

20:) external override {

21: _safeTransferFrom(gasToken, msg.sender, gasFeeAmount) ;

The "payGasForContractCallWithToken()":

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

35: function payGasForContractCallWithToken (
36: address sender,

37: string calldata destinationChain,
38: string calldata destinationAddress,
39: bytes calldata payload,

40: string memory symbol,

41: uint256 amount,

42: address gasToken,

43: uint256 gasFeeAmount,

44: address refundAddress

45) external override {

46: {

47 : _safeTransferFrom(gasToken, msg.sender, gasFeeAmount) ;
48: }

And the "addGas()":

51 | Page

CHAINTROOPERS

File: /hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

100: function addGas (

101: bytes32 txHash,

102: uint256 logIndex,

103: address gasToken,

104: uint256 gasFeeAmount,

105: address refundAddress

106:) external override {

107: _safeTransferFrom(gasToken, msg.sender, gasFeeAmount) ;
108:

109: emit GasAdded (txHash, logIndex, gasToken, gasFeeAmount,
refundAddress) ;

110: }

For example, the following test case will succeed:

it ('zero gas is added', async () => {
const txHash = keccak256 (defaultAbiCoder.encode (['string'],
['random tx hash']));
const logIndex = 13;
const gasToken = testToken.address;
const gasFeeAmount = 0;

const nativeGasFeeAmount = parseEther('1.0");

await testToken.connect (userWallet) .approve (gasService.address,

1leo6) ;

await expect (gasService.connect (userWallet) . addGas (txHash,
logIndex, gasToken, gasFeeAmount, userWallet.address))
.to.emit (gasService, 'GasAdded')
.withArgs (txHash, logIndex, gasToken, gasFeeAmount,
userWallet.address)
.and.to.emit (testToken, 'Transfer')
.withArgs (userWallet.address, gasService.address,

gasFeeAmount) ;

52 | Page

CHAINTROOPERS

) g

And the output will be:

HilterGasService

v zero gas is added

Recommendation

It is advisable to verify that the amount is not zero. Since all functions use the
"_safeTransferFrom" internal function, the check can be performed there.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented

with a simple check:

if (amount == 0) revert InvalidAmount () ;

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:XIMAV:X/MAC:X/MPR:X/MU
[XIMS:XIMC:X/MI:XIMA:X

53 | Page

CHAINTROOPERS

5.2.13 Unvalidated amount in "collectfees" at "HilterGasService.sol"

It was identified that the function "collectFees()" does not validate the amount
parameter. Although transfering zero tokens is an operation that will neither
modify the state of the contract nor produce any results, it will spend the gas
the user has provided. Furthermore, it may emit the corresponding event,
depending on the ERC20 token's implementation.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:
function collectFees (address payable receiver, address[] calldata tokens)

external onlyOwner ({

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer (address (this) .balance) ;
128: } else {

129: uint256 amount = IERC20 (token) .balanceOf (address (this)) ;
130: _safeTransfer (token, receiver, amount);
131: }

132: }

133: }

which will call either the "receiver.transfer()" or the " safeTransfer()". And the
“ safeTransfer()":

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

147: function _safeTransfer (
148: address tokenAddress,
149: address receiver,
150: uint256 amount

151:) internal {

54 | Page

CHAINTROOPERS

152: (bool success, bytes memory returnData) =
tokenAddress.call (abi.encodeWithSelector (IERC20.transfer.selector,
receiver, amount));

153: bool transferred = success && (returnData.length == uint256 (0)
|| abi.decode (returnData, (bool)))

154:

155: if (!transferred || tokenAddress.code.length == 0) revert
TransferFailed() ;

156: }

For example, the following test case will succeed:

it ('collect zero fees', async () => {
const destinationChain = 'ethereum';
const destinationAddress = ownerWallet.address;
const payload = defaultAbiCoder.encode(['address', 'address'],

[ownerWallet.address, userWallet.address]):;
const symbol = 'USDC';
0;

const amount

const gasToken = testToken.address;

const gasFeeAmount = 0;
const nativeGasFeeRmount = 0;
await

testToken.connect (userWallet) .approve (gasService.address, 0);
await expect (await

gasService.connect (ownerWallet) .collectFees (ownerWallet.address, [
testToken.address]))

.to.changeEtherBalance (ownerWallet, nativeGasFeeAmount)

.and.to.emit (testToken, 'Transfer')

.withArgs (gasService.address, ownerWallet.address,
gasFeeAmount) ;

}):

And the output will be:

55| Page

CHAINTROOPERS

gas receiver

v collect zero fees

Recommendation

It is recommended to verify that the amount is greater than zero.

The functions "assert" and "require" can be used to check for conditions and
throw an exception if the condition is not met. The control can also be
implemented with a simple check:

if (amount == 0) revert InvalidAmount () ;

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV:X/MAC: X/MPR: X/MU
12 XIMS: X/IMC: X/MI: X/IMA: X

56 | Page

CHAINTROOPERS

5.2.14 Unvalidated address "receiver" in "collectFees" at "HilterGasService.sol"

Description Low

It was found that the "receiver" in the external function "collectFees" is not
validated to not be the zero address. Transferring a number of tokens to the
zero address is equivalent to burning that number of tokens.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:
function collectFees (address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; 1 < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer (address (this) .balance) ;
128: } else {

129: uint256 amount = IERC20 (token) .balanceOf (address (this)) ;
130: _safeTransfer (token, receiver, amount);
131: }

132: }

133: }

For example, the following test case can be used to replicate the issue:

await expect (gasService.connect (ownerWallet) .collectFees (ADDRESS_ZERO,

[ADDRESS_ZERO])) ;

And the output will be:

gas receiver

v collectfees to zero address

57 | Page

CHAINTROOPERS

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented

with a simple check:

if (receiver == address(0)) revert InvalidReceiver();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV:X/MAC: X/MPR: X/MU
I: XIMS: XIMC: X/MI: X/MA: X

58 | Page

CHAINTROOPERS

5.2.15 Unvalidated address "receiver” in "refund” at "HilterGasService.sol"

Description LOow

It was found that the "receiver" in the external function "refund" is not validated
to not be the zero address. Transfering an amount of tokens to the zero address
is equivalent to burning that amount of tokens.

The issue exists at the following function:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol

135: function refund/

136: address payable receiver,

137: address token,

138: uint256 amount

139:) external onlyOwner {

140: if (token == address(0)) {
141: receiver.transfer (amount) ;
142: } else {

143: _safeTransfer (token, receiver, amount);
144: }

145: }

The following test case can be used to replicate this issue:

await expect (gasService.connect (ownerWallet) . refund (ADDRESS_ZERO,
ADDRESS ZERO, gasFeeAmount)) ;

And the output will be:

gas receiver

v refund to zero address

59 | Page

CHAINTROOPERS

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented

with a simple check:

if (receiver == address(0)) revert InvalidReceiver();

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR:X/MAV:X/MAC: X/MPR:X/MU
[XIMS:XIMC:X/MI:XIMA: X

60 | Page

CHAINTROOPERS

5.2.16 Unvalidated address "recipient” in "withdrawNative" at
"HilterDepositService.sol"

Description Low

It was found that the "recipient” in the external function "withdrawNative" is not
validated to not be the zero address. Transferring a number of tokens to the
zero address is equivalent to burning that number of tokens.

The issue exists at the following function:

File: /hilter-cgp-solidity/contracts/deposit-
service/HilterDepositService.sol
115: function withdrawNative (bytes32 salt, address payable recipient)

external {

116: address token = wrappedToken() ;
117: DepositReceiver depositReceiver = new DepositReceiver{
118: salt: keccak256 (abi.encode (PREFIX DEPOSIT WITHDRAW NATIVE,

salt, recipient))

119: PO

120: uint256 amount =
IERC20 (token) .balanceOf (address (depositReceiver)) ;

121:

122: if (amount == 0) revert NothingDeposited() ;

123:

124: if (! execute (depositReceiver, token, 0,
abi.encodeWithSelector (IWETHY.withdraw.selector, amount))) revert
UnwrapFailed() ;

125:

126: // NOTE: “depositReceiver must always be destroyed in the

same runtime context that it is deployed.
127: depositReceiver.destroy (recipient) ;

128: }

The following test case can be used to replicate this issue:

61| Page

CHAINTROOPERS

If ('unwrap native currency to zero address', async () => {

const recipient = userWallet.address;

const salt = formatBytes32String(l);

const amount = leé6;

const depositAddress = await
depositService.depositAddressForWithdrawNative (salt, ADDRESS ZERO) ;

await token.connect (ownerWallet) .transfer (depositAddress,
amount) ;

await expect (await depositService.withdrawNative (salt,
ADDRESS_ZERO)) ;

1)

And the output will be:

gas receiver

v unwrap native currency to zero address

Recommendation

It is advisable to verify that the address is not the zero address.

The functions assert and require can be used to check for conditions and throw
an exception:

if (recipient == address(0)) revert UnwrapFailed() ;

CVSS Score

AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:L/A:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV:X/MAC:X/MPR: X/MU
1: XIMS: X/IMC: X/MI: X/IMA: X

62| Page

CHAINTROOPERS

5.3 Informational Findings

5.3.1 Ownership can be transferred to same owner at "Ownable.sol"

Description INFO

It was identified that the "transferOwnership" functionality does not validate if
the new owner is the same with the existing owner. Currently, the
"transferOwnership" function allows the current owner to transfer control of an
Ownable contract to a newOwner.

The issue exists at the following location:

File: /hilter-cgp-solidity/contracts/Ownable.sol
21: function transferOwnership (address newOwner) external virtual

onlyOwner ({

22 if (newOwner == address(0)) revert InvalidOwner ()
23:

24 : emit OwnershipTransferred (owner, newOwner) ;

25: owner = newOwner;

26: }

A user, who is the owner of the specific contract, could use this function in order
to transfer the ownership again back to them, creating an event of this
transaction.

It should be noted that the same logic is also implemented in the Ownable.sol
contract from Open Zeppelin

Recommendation

It is advisable to verify that the newOwner is different than the current owner.

The functions assert and require can be used to check for conditions and throw
an exception if the condition is not met. The control can also be implemented
with a simple check:

if (newOwner == owner) revert

63| Page

CHAIN TROOPERS
CVSS Score

AV:N/AC:L/PR:N/ULN/S:U/C:N/I:NJA:N/E:P/RL:X/RC:C/CR:X/IR: X/AR: X/MAV: X/MAC: X/MPR:X/MUI:
XIMS:XIMC:XIMI:XIMA: X

64 | Page

CHAINTROOPERS

5.3.2 Lack of circuit breaker for emergency stop at "HilterGasService"

Description INFO

It was identified that the "HilterGasService" does not support a circuit breaker
control. A circuit breaker, also referred to as an emergency stop, can stop the
execution of functions inside the smart contract. A circuit breaker can be
triggered manually by trusted parties included in the contract like the contract
admin or by using programmatic rules that automatically trigger the circuit
breaker when the defined conditions are met. Applying the Emergency Stop
pattern to a contract adds a fast and reliable method to halt any sensitive
contract functionality as soon as a bug or another security issue is discovered.
This leaves enough time to weigh all options and possibly upgrade the contract
in order to fix the security breach.

Recommendation

It is advisable to add a circuit breaker. For example, the following code can be
used to set a modifer:

bool public contractPaused = false;

function circuitBreaker () public onlyOwner { // onlyOwner can call
if (contractPaused == false) { contractPaused = true; }
else { contractPaused = false; }

}

// If the contract is paused, stop the modified function

// Attach this modifier to all public functions

modifier checkIfPaused() {

require (contractPaused == false);

’

function safeTransferFrom/(
address tokenAddress,
address from,
uint256 amount

) internal checkIfPaused returns (bool)

65| Page

CHAINTROOPERS

This approach is similar to openzeppelin pausable contract which can be found
in the following URL:

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/security/Pausable.sol

In both cases, a multisig Owner address must be used to ensure a
decentralization strategy.

CVSS Score

AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC: X/MPR:X/MUI:
XIMS:XIMC:X/MI:XIMA:X

66 | Page

CHAINTROOPERS

5.3.3 Excessive loop iterations allowed in "setAdmins" at
"AdminMultisigBase.sol"

It was identified that the internal function "_setAdmins", which is only called by
the administrator -only "setup" function in "HilterGateway .sol", contains a
potentially costly loop. Computational power on blockchain environments is
paid , thus reducing the computational steps required to complete an
operation is not only a matter of optimization but also cost efficiency. Loops
are a great example of costly operations : as many elements an array has,
more iterations will be required to complete the loop.

Excessive loop iterations may exhaust all available gas. For example, if an
attacker is able to influence the element array's length, then they will be able to
cause a denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "_setAdmins" iterates over the
"adminAddresses" array which is decoded from the provided argument and is
of unspecified length:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

144: function _setAdmins (

145: uint256 adminEpoch,

146: address[] memory accounts,

147: uint256 threshold

148:) internal {

149: uint256 adminLength = accounts.length;
158: for (uint256 i; i < adminLength; ++i) {

The function is called by:

File: /hilter-cgp-solidity/contracts/HilterGateway.sol

241: function setup (bytes calldata params) external override {
242: // Prevent setup from being called on a non-proxy (the
implementation) .

67 |Page

CHAINTROOPERS

243: if (implementation () == address(0)) revert NotProxy();

244

245: (address[] memory adminAddresses, uint256 newAdminThreshold,
bytes memory newOperatorsData) = abi.decode (

246: params,

247 : (address[], uint256, bytes)

248:) ;

249:

250: // NOTE: Admin epoch is incremented to easily invalidate

current admin-related state.

251: uint256 newAdminEpoch = adminEpoch () + uint256(1);

252: __setAdminEpoch (newAdminEpoch) ;

253: _setAdmins (newAdminEpoch, adminAddresses, newAdminThreshold) ;
254:

260: }

Recommendation

It is advisable to refactor the logic to not require to set all administrators in one
transaction (if required), or to insert an upper limit that will allow the operation
to be performed without failing due to insufficient gas.

If it is absolutely necessary to loop over an array of unknown size, the function
should be able to execute the operation in multiple blocks and in multiple
transactions. In that case, it will be required to maintain the extra state of how

many iterations have already been performed in order to continue from that
point in the next function call.

CVSS Score

AV:N/AC:L/PR:N/UI:N/S:U/C:N/IN/AIN/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:
XIMPR:X/MUEX/MS:X/IMCX/MEXIMA:X

68 | Page

CHAINTROOPERS

5.3.4 Excessive loop iterations allowed in "admins" at "HilterGateway.sol"

It was identified that the external function "admins", which can be called by any
user, contains a potentially costly loop. Computational power on blockchain
environments is paid, thus reducing the computational steps required to
complete an operation is not only a matter of optimization but also cost
efficiency. Loops are a great example of costly operations: as many elements an
array has, more iterations will be required to complete the loop.

Excessive loop iterations exhaust all available gas. For example, if an attacker is
able to influence the element array's length, then they will be able to cause a
denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "admins()" which returns an array with all the
available admins, will iterate based on the result of the "_getAdminCount()"
functionality:

File: hilter-cgp-solidity/contracts/HilterGateway.sol
190: /// @dev Returns the array of admins within a given ‘adminEpoch’.
191: function admins (uint256 epoch) external view override returns

(address[] memory results) {

192: uint256 adminCount = _getAdminCount (epoch) ;
193: results = new address|[] (adminCount) ;

194:

195: for (uint256 i; i < adminCount; ++i) {

196: results[i] = getAdmin(epoch, 1i);

197: }

198: }

And the "_getAdminCount()":

File: hilter-cgp-solidity-contracts/AdminMultisigBase.sol

100: function _getAdminCount (uint256 adminEpoch) internal view returns
(uint256) {

101: return getUint (_getAdminCountKey (adminEpoch)) ;

69 |Page

CHAINTROOPERS

102: }

which eventually will retrieve it from the storage:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

64: function getAdminCountKey (uint256 adminEpoch) internal pure
returns (bytes32) {

65: return keccak256 (abi.encodePacked (PREFIX ADMIN COUNT,
adminEpoch)) ;

06: }

67:

This could previously be configured at:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

140: function _setAdminCount (uint256 adminEpoch, uint256 adminCount)
internal {

141: _setUint (_getAdminCountKey (adminEpoch), adminCount);

142: }

143:

Which is used at:

File: hilter-cgp-solidity/contracts/AdminMultisigBase.sol

144: function _setAdmins (

145: uint256 adminEpoch,

146: address[] memory accounts,

147: uint256 threshold

148:) internal {

149: uint256 adminLength = accounts.length;

150:

151: if (adminLength < threshold) revert InvalidAdmins ()
152:

153: if (threshold == uint256(0)) revert InvalidAdminThreshold() ;
154:

70 | Page

CHAINTROOPERS

155: _setAdminThreshold (adminEpoch, threshold);

156: _setAdminCount (adminEpoch, adminLength) ;

157:

158: for (uint256 i; i < adminLength; ++1) {

159: address account = accounts[i];

160:

161: // Check that the account wasn't already set as an admin

for this epoch.
162: if (_isAdmin(adminEpoch, account)) revert

DuplicateAdmin (account) ;

163:

164: if (account == address(0)) revert InvalidAdmins/() ;

165:

166: // Set this account as the i-th admin in this epoch (needed

to we can clear topic votes in “onlyAdmin’) .

167: __setAdmin (adminEpoch, i, account);
168: _setIsAdmin (adminEpoch, account, true);
169: }

And this is configured at the "setup" functionality:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

241: function setup(bytes calldata params) external override {

242 // Prevent setup from being called on a non-proxy (the
implementation) .

243: if (implementation () == address (0)) revert NotProxy();

244:

245: (address|[] memory adminAddresses, uint256 newAdminThreshold,
bytes memory newOperatorsData) = abi.decode (

246: params,

247 : (address[], uint256, bytes)

248:)

249:

250: // NOTE: Admin epoch is incremented to easily invalidate

current admin-related state.

251: uint256 newAdminEpoch = adminEpoch() + uint256(1);
252: _setAdminEpoch (newAdminEpoch) ;
253: __setAdmins (newAdminEpoch, adminAddresses, newAdminThreshold);

71| Page

CHAINTROOPERS

Recommendation

It is advisable to refactor the logic to return the admins in multiple transactions,
or to insert an upper limit that will allow the operation to be performed without
failing due to insufficient gas.

CVSS Score

AVIN/AC:L/PRIN/ULIN/S:U/C:N/I:N/A:N/E:P/RLX/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:
XIMPR:X/MUIX/MS:X/IMCX/MIEEX/IMA:X

72 |Page

CHAINTROOPERS

5.3.5 Excessive loop iterations allowed in "collectFees" at
"HilterGasService.sol"

It was identified that the external function "collectFees", which can be called
only by the contract's owner, contains a potentially costly loop. Computational
power on blockchain environments is paid, thus reducing the computational
steps required to complete an operation is not only a matter of optimization but
also cost efficiency. Loops are a great example of costly operations: as many
elements an array has, more iterations will be required to complete the loop.

In the specific case, the function "collectFees" iterates over the "tokens" array,
which is provided as argument and is of unspecified length:

File: hilter-cgp-solidity/contracts/gas-service/HilterGasService.sol 122:
function collectFees (address payable receiver, address[] calldata tokens)

external onlyOwner {

123: for (uint256 i; i < tokens.length; i++) {

124: address token = tokens[i];

125:

126: if (token == address(0)) {

127: receiver.transfer (address (this) .balance) ;
128: } else {

129: uint256 amount = IERC20 (token) .balanceOf (address (this)) ;
130: _safeTransfer (token, receiver, amount);
131: }

132: }

133: }

73 | Page

CHAINTROOPERS
Recommendation

It is advisable to refactor the logic to not require to collect all the fees in one
transaction.

Alternatively, If it is absolutely necessary to loop over an array of unknown size,
the function should plan for it to potentially take multiple blocks and therefore
require multiple transactions. In that case, it will be required to maintain the
extra state of how many iterations have already been performed in order to
continue from that point in the next function call. However, this may cause
additional issues if other functions are executed while waiting for the next
iteration of this function to be executed.

CVSS Score

AV:N/AC:L/PR:N/ULEN/S:U/C:N/IEN/A:N/E:P/RL:X/RC:C/CRX/IR:X/ARX/MAV:X/MAC:
XIMPR:X/MULEX/MS:X/MCX/MIEXIMA:X

74 | Page

CHAINTROOPERS

5.3.6 Excessive loop iterations allowed in "execute” at "HilterGateway.sol"

It was identified that the external function "execute", which can be called only
by the gateway operators, contains a potentially costly loop. Computational
power on blockchain environments is paid, thus reducing the computational
steps required to complete an operation is not only a matter of optimization but
also cost efficiency. Loops are a great example of costly operations: as many
elements an array has, more iterations will be required to complete the loop.

Excessive loop iterations may exhaust all available gas. For example, if an
attacker caninfluence the element array's length, then they will be able to cause
a denial of service, preventing the execution to jump out of the loop.

In the specific case, the function "execute" iterates over the "commands" array
which is decoded from the provided arguments and is of unspecified length:

File: hilter-cgp-solidity/contracts/HilterGateway.sol

262: function execute (bytes calldata input) external override {269:
270:

291:

292: for (uint256 i; i < commandsLength; ++i) ({

293: bytes32 commandId = commandIds[i];

294:

295: if (isCommandExecuted (commandId)) continue; /* Ignore if

duplicate commandId received */

296:

324: }
325 ¢ }

It is advisable to refactor the logic to perform the operation in multiple
transactions, or to insert an upper limit that will allow the operation to be
performed without failing due to insufficient gas.

75 | Page

CHAIN TROOPERS
CVSS Score

AVIN/AC:L/PR:N/ULIN/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MAC:
XIMPR:X/MULEX/MS:X/MCX/MIEXIMA:X

76 | Page

CHAINTROOPERS

5.3.7 No reentrancy protection in "execute" at "DepositReceiver.sol"

Description INFO

It was identified that the "execute" function of the DepositReceiver.sol
is protected from Reentrancy attacks. This type of attack can occur when a

contract sends ether to an unknown address . An attacker can carefully
construct a contract at an external address that contains malicious code in the
fallback function . Thus, when a contract sends ether to this address, it will
invoke the malicious code. Typically, the malicious code executes a function
on the vulnerable contract , performing operations not expected by the
developer.

File: hilter-cgp-solidity/contracts/deposit-service/DepositReceiver.sol

20: function execute (

21: address callee,

22: uint256 value,

23: bytes calldata data

24:) external onlyOwner returns (bool success, bytes memory returnData)
{

25: if (callee.code.length == 0) revert NotContract();

26

27 : (success, returnData) = callee.call{ value: value } (data);
28: }

Recommendation

It is advisable to also use the "ReentrancyGuard" as an added layer of security.

CVSS Score

AV:N/AC:H/PR:H/ULIN/S:U/C:N/1:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MA
CX/MPR:X/MULX/MS:X/MC:X/MIXXIMA:X

77 |Page

CHAINTROOPERS

5.3.8 Floating pragma in multiple interfaces at "contracts/interfaces/" folder

It was found that many interfaces of smart contracts are using a floating
pragma. In Solidity programming, multiple APIs only be supported in some
specific versions. In each contract, the pragma keyword is used to enable certain
compiler features or checks. If a contract does not specify a compiler version,
developers might encounter compile errors in the future code reuse because of
the version gap.

The issue exists at:

» contracts/interfaces/IOwnable.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IMintableCappedERC20.s0l:3:pragma solidity 0.8.9;

» contracts/interfaces/IERC20.sol:3:pragma solidity 20.8.9;

» contracts/interfaces/IUpgradable.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IERC20BurnFrom.sol:3:pragma solidity 20.8.9;

» contracts/interfaces/IERC20Permit.sol:3:pragma solidity 20.8.9;

» contracts/interfaces/IHilterExecutable.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IWETH9.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IERC20Burn.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IHilterForecallable.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IBurnableMintableCappedERC20.s50l:3:pragma solidity
10.8.9;

» contracts/interfaces/IDepositServiceBase.sol:3:pragma solidity 10.8.9;

» contracts/interfaces/IHilterGateway.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IHilterDepositService.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IHilterAuthWeighted.sol:3:pragma solidity 70.8.9;

» contracts/interfaces/IHilterGasService.sol:3:pragma solidity £0.8.9;

» contracts/interfaces/IHilterAuth.sol:3:pragma solidity /£0.8.9;

» contracts/interfaces/ITokenDeployer.sol:3:pragma solidity /0.8.9;

78 | Page

CHAINTROOPERS
Recommendation

Source files should be annotated with a pragma version to reject compilation

with previous or future compiler versions that might introduce incompatible
changes.

It is recommended to avoid using the "A" directive to avoid using nightly builds,

CVSS Score

AV:N/AC:H/PR:H/UL:N/S:U/C:N/1:N/A:N/E:P/RL:X/RC:C/CRX/IR:X/AR:X/MAV:X/MA
CX/MPR:X/MULX/MS:X/MC:X/MIXXIMA:X

79 |Page

CHAINTROOPERS

5.3.9 Setup functionality can be circumvented during contract upgrade at
"/contracts/util/Upgradable.sol”

Description INFO

It was identified that the "upgradable" contracts allow the upgrade to take place
without calling the "setup" functionality. In general, upgradable contracts are
not able to use constructors to store data due to the proxy design. As a result,
a well-protected initialization functionality such as the "setup()" function is used
to perform the required operations. However, in the specific case, it was found
that the upgrade can take place without calling this functionality, by just not
providing any parameters. The initialization phase of an upgradeable smart
contract is one of the most important phases. If not properly handled, it can
compromise a smart contract with perfect business logic implementation.

The issue exists at:

File: /hilter-cgp-solidity-4.3.0/contracts/util/Upgradable.sol

49:

50: if (params.length > 0) {

51: // solhint-disable-next-line avoid-low-level-calls

52: (bool success,) =

newlmplementation.delegatecall (abi.encodeWithSelector (this.setup.selector

, params)) ;

53:

54: if (!success) revert SetupFailed():;
55: }

Recommendation

It is advisable to always call the "setup()" initialization functionality by default.

CVSS Score

AV:N/AC:H/PR:H/UIL:N/S:U/C:N/I:N/A:N/E:P/RL:X/RC:C/CR:X/IR:X/AR:X/MAV:X/MA
CX/MPR:X/MULX/MS:X/MC:X/MIX/MA:X

80| Page

CHAINTROOPERS

6 Retest Results

6.1 Retest of Medium Severity Findings

All MEDIUM-risk findings has been fixed.

6.2 Retest of Low Severity Findings

All LOW-risk vulnerabilities were found to be sufficiently mitigated, since the
affected functionality has been fixed or removed.

6.3 Retest of Informational Findings

All INFORMATIONAL findings has been fixed.

81 |Page

CHAINTROOPERS

References & Applicable Documents

Ref. Title Version
N/A N/A N/A
Document History
Revision Description Changes Made By Date
0.2 Initial Draft Chaintroopers June21 2025
1.0 First Version Chaintroopers July 15, 2025
Added retest results
1.1 Chaintroopers August 3, 2025
Added v4.3.0 results

82| Page

