
Security Assessment

Hilter
CertiK Assessed on July 30, 2025

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 1 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY

CertiK Assessed on July 30, 2025

Hilter

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

EVM Compatible

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/30/2025

KEY COMPONENTS

N/A

CODEBASE
https://gitlab.com/hilterltd-group/
hilter-defi/packages/contracts/src

View

All

in

Codebase

Page

COMMITS
da9877c0823663a5fca5f75f3a09b84e050dab8e

9b86f2af463028173079c7180e231c6f14325c54

View All in Codebase Page

6
Total Findings

4
Resolved

0
Mitigated

0
Partially Resolved Acknowledged

0
Declined

HILTER

2

TABLE OF CONTENTS HILTER

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

SRC-02

:

Potential

Asset

Lock

in

`FixedYieldVault`

and

`UpsideVault`

Contracts UVB-01

:

Inconsistent

Use

of

`Pausable`

Contract

in

`UpsideVault`

HBV-01

:

Tokens

Transferred

to

Vault

Will

Be

Locked

SRC-01

:

Incompatibility

With

Deflationary

Tokens

(Non-standard

ERC20

Token)

SRC-03

:

Third-Party

Dependencies

UVB-03

:

Shadowing

State

Variable

Formal

Verification

Considered

Functions

And

Scope

Verification

Results

Appendix

Disclaimer

TABLE OF CONTENTS HILTER

CODEBASE HILTER

Repository

https://gitlab.com/hilterltd-group/hilter-defi/packages/contracts/src

Commit

da9877c0823663a5fca5f75f3a09b84e050dab8e

9b86f2af463028173079c7180e231c6f14325c54

CODEBASE HILTER

AUDIT SCOPE

30 files audited 2 files with Acknowledged findings 28 files without findings

ID Repo File SHA256 Checksum

HBV
hilterltd-group/

hilter-defi
base/HilterlBaseVault.sol

746d77413ed9e406ea61e32cde5ae555ff23c

112dfd40dc9b73fd6f7f761b7a5

UVB vaults/UpsideVault.sol

Hilter

24b73c346770cd0b044ee45c0c8401725175

72261d086e73cd474608569c4d44

HKY KYCProvider.sol
1b9228c7f2e6b2289ae5b18cd64373796dc4

adf3910bb1ce838f8680ba6329b4

HFY
HilterFixedYieldVaultWithUpsid

e.sol

 b020e54eb3fb146c8e9d997177a1197b8641

77693707b66c04dbd567a11d620a

HFV HilterFixedYieldVault.sol
07f7969bf5a99cc944bf92506659663634e7f7

a1e9964ada22bd9a395c0b8140

MVB extensions/MaturityVault.sol
24619b65444c6bc19e69350145681b8e71b0

341b52aaff45fac8d032c2adb864

HFF
factories/HilterFixedYieldVaultFa

ctory.sol

7b8658de2db4e7c17dd01bf149ad7b25ed71

a098037fc4e68b2a33bb195330a6

HUV
factories/HilterUpsideVaultFactory.

sol
6eb9b98e837fb1f2d7c61d34ab354e7c40135

8f860003286531b31c2163e581c

HVF factories/HilterlVaultFactory.sol
be881491aa86d2d203146ac91dbd92539a09

851b94086d564267fe55dbeef729

MCP plugins/MaxCapPlug.sol
6a088c4f87a285941f97d1267b848fb0c5cd2

5f89f9fa2a1b4341514430b7035

WPI plugins/WhitelistPlugIn.sol
c3e4faaa4bb6ef3c05abdb6480ffad6bfc04e4

d9b545bf3213cc2f53b4aaa370

WIN plugins/WindowPlugIn.sol
c79b09843e9b2038710f7a33fa56b8810533d

26a9262a597441ed1d05c7fd775

FYV vaults/FixedYieldVault.sol
c7aa8297b9288698541a92a95197cecfef8f8

ddcc7dbee8d11cf6d3268c73db7

AUDIT SCOPE HILTER

HILTER

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

ID Repo File SHA256 Checksum

IHB interface/IHilter.sol
ce476844f5b7b27820becf49288f263d83034

68a3710b166dc746880dfab0fe1

IKY interface/IKYCProvider.sol
6bdbdec57340f10c318c08f47c9ca20b77290

268de80ecc6e9cc9aaf71751bac

HRE base/HilterBaseVault.sol
95d97f2861995ce59308b87f0a5e8b300197c

64f660e998bc1d0f1f73dba8182

MVU
24619b65444c6bc19e69350145681b8e71b0

341b52aaff45fac8d032c2adb864

HYF
factories/HilterFixedYieldVaultFa

ctory.sol

7b8658de2db4e7c17dd01bf149ad7b25ed71

a098037fc4e68b2a33bb195330a6

HUF factories/HilterUpsideVaultFacto
6eb9b98e837fb1f2d7c61d34ab354e7c40135

8f860003286531b31c2163e581c

HRD factories/HilterVaultFactory.sol
be881491aa86d2d203146ac91dbd92539a09

851b94086d564267fe55dbeef729

IHU interface/IHilter.sol
ce476844f5b7b27820becf49288f263d83034

68a3710b166dc746880dfab0fe1

IKC interface/IKYCProvider.sol
6bdbdec57340f10c318c08f47c9ca20b77290

268de80ecc6e9cc9aaf71751bac

MAX plugins/MaxCapPlug.sol
6a088c4f87a285941f97d1267b848fb0c5cd2

5f89f9fa2a1b4341514430b7035

WHI plugins/WhitelistPlugIn.sol
c3e4faaa4bb6ef3c05abdb6480ffad6bfc04e4

d9b545bf3213cc2f53b4aaa370

WID plugins/WindowPlugIn.sol
c79b09843e9b2038710f7a33fa56b8810533d

26a9262a597441ed1d05c7fd775

FIX vaults/FixedYieldVault.sol
57b1a685c6050ac8ac95b0f2401145afa765a

b8e9d243dbfead354d9d4c5bbfc

UVU vaults/UpsideVault.sol
3c3f66d642d7c9837285edb18400bf0581cb9

ae019df7edd8b292515317cb58e

HYV HilterFixedYieldVault.sol
07f7969bf5a99cc944bf92506659663634e7f7

a1e9964ada22bd9a395c0b8140

AUDIT SCOPE HILTER

extensions/MaturityVault.sol

ry.sol

hilterltd-group/

hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

ID Repo File SHA256 Checksum

HFW
HilterFixedYieldVaultWithUpside.sol b020e54eb3fb146c8e9d997177a1197b8641

77693707b66c04dbd567a11d620a

HKC HilterKYCProvider.sol
1b9228c7f2e6b2289ae5b18cd64373796dc4

adf3910bb1ce838f8680ba6329b4

AUDIT SCOPE HILTER

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

APPROACH & METHODS HILTER

This report has been prepared for Hilter to discover issues and vulnerabilities in the source code of the Hilter project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination

has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS HILTER

FINDINGS HILTER

This report has been prepared to discover issues and vulnerabilities for Hilter. Through this audit, we have uncovered

8 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

SRC-02
Potential

Asset

Lock

In

FixedYieldVault

And

UpsideVault

Contracts
Logical Issue Medium Resolved

UVB-01
Inconsistent

Use

Of

Pausable

Contract

In

UpsideVault

Access

Control
Medium Resolved

HBV-01 Tokens

Transferred

To

Vault

Will

Be

Locked Design

Issue Minor Resolved

SRC-01
Incompatibility

With

Deflationary

Tokens

(Non-Standard

ERC20

Token)
Volatile Code Minor Acknowledged

SRC-03 Third-Party

Dependencies Volatile Code Minor Acknowledged

UVB-03 Shadowing

State

Variable Coding Style Informational Resolved

FINDINGS

Total Findings

0
Critical Major

2
Medium

3
Minor

1
Informational

HILTER

6 0

SRC-02 POTENTIAL ASSET LOCK IN FixedYieldVault AND

UpsideVault CONTRACTS

Category Severity Location Status

Logical

Issue
Medium

base/HilterBaseVault.sol (da9877): 103; vaults/UpsideVault.sol (da

9877): 92
Resolved

Description

The FixedYieldVault and UpsideVault contracts use the totalAssetDeposited variable to track the total assets

deposited into the vault. This variable is adjusted upward during deposits and downward during withdrawals. However, if

assets are directly transferred into the vault without using the _deposit() function (e.g., through donations or direct

transfers), these assets are not recorded in totalAssetDeposited . they will be locked in the contract indefinitely.

Although this issue is somewhat mitigated since both contracts inherit from the MaturityVault contract, which includes a

_mature() function that adjusts totalAssetDeposited to match the current balance, this adjustment is not guaranteed to

occur before withdrawals are permitted. Moreover, tokens transferred after _mature() has been called would still be

locked.

Recommendation

It is recommended to prevent tokens from being locked in the contract.

Alleviation

[Hilter Team, 08/01/2025]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c54.

SRC-02 HILTER

UVB-01 INCONSISTENT USE OF Pausable CONTRACT IN

UpsideVault

Category Severity Location Status

Access Control Medium vaults/UpsideVault.sol (da9877): 52, 80 Resolved

Description

The UpsideVault contract inherits from the Pausable contract, which provides functionality to pause and unpause

contract operations. However, the UpsideVault does not utilize the whenNotPaused modifier from the Pausable contract

in its _deposit() and _withdraw() functions. This oversight nullifies the benefits of having a pausable mechanism.

Recommendation

It is recommended to apply whenNotPaused modifier in the UpsideVault 's _deposit() and _withdraw() functions.

Alleviation

[Hilter Team, 08/01/2025]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c54.

UVB-01 HILTER

HBV-01 TOKENS TRANSFERRED TO VAULT WILL BE LOCKED

Category Severity Location Status

Design Issue Minor base/HilterBaseVault.sol (da9877): 132, 140 Resolved

Description

The comments of the transfer() and transferFrom() functions in the HilterBaseVault contract indicate that

tokens sent to the contract should allow for asset redemption. However, there appears to be no mechanism in the

provided code to handle the tokens once they reach the contract. This could lead to tokens being locked within the

contract

with

no clear method for users to retrieve the corresponding assets.

 /// @notice The share token should be soul bound. Should be transferable only to

vault to receive assets back

 function transfer(address to, uint256 value) public override(ERC20, IERC20)

returns (bool) {

 if (to != address(this)) revert HilterVault__TransferOutsideEcosystem();
 address owner = _msgSender();

 _transfer(owner, to, value);

 return true;

 }

 /// @notice The share token should be soul bound. Should be transferable only to

vault to receive assets back

 function transferFrom(address from, address to, uint256 value) public

override(ERC20, IERC20) returns (bool) {

 if (to != address(this)) revert HilterVault__TransferOutsideEcosystem();
 address spender = _msgSender();

 _spendAllowance(from, spender, value);

 _transfer(from, to, value);

 return true;

 }

Recommendation

It is recommended to revert any call to transfer() or transferFrom() .

Alleviation

[Hilter Team, 05/07/2025]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c54.

HBV-01 HILTER

SRC-01 INCOMPATIBILITY WITH DEFLATIONARY TOKENS (NON-
STANDARD ERC20 TOKEN)

Category Severity Location Status

Volatile

Code
Minor

base/HilterBaseVault.sol (da9877): 82, 106; vaults/UpsideVault.sol

(da9877): 71, 72, 94, 97
Acknowledged

Description

The vault contracts are not equipped to handle non-standard ERC20 tokens, including deflationary or rebase tokens, which

may apply transaction fees or adjust balances dynamically. The contract's reliance on transferFrom() and transfer()

methods without validating the actual transferred amounts could result in discrepancies between expected and actual token

balances. This issue is particularly critical because it could lead to insufficient tokens available for depositors when

attempting to withdraw, potentially disrupting contract functionality and user transactions.

Scenario

When transferring deflationary ERC20 tokens, the input amount may not equal the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrive to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Proof of Concept

Foundry test:

SRC-01 HILTER

// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.7.5;

pragma abicoder v2;

import "forge-std/Test.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract DeflationaryToken is ERC20 {

 address deadAddress = 0x000000000000000000000000000000000000dEaD;

 constructor () ERC20 ("Test", "TEST") {

 _mint(msg.sender, 1000000);

 }

 function _transfer(address sender, address recipient, uint256 amount) internal

override {

 uint256 burnAmount = 10 * amount / 100;

 uint256 transferAmount = amount - burnAmount;

 super._transfer(sender, deadAddress, burnAmount);

 super._transfer(sender, recipient, transferAmount);

 }

}

contract VictimContract {

 address public token;

 mapping(address => uint256) public stakedAmount;

 constructor (address _token) {

 token = _token;

 }

 function stake(uint256 amount) public {

 ERC20(token).transferFrom(msg.sender, address(this), amount);

 stakedAmount[msg.sender] += amount;

 }

 function unstake() public {

 uint256 amount = stakedAmount[msg.sender];

 ERC20(token).transfer(msg.sender, amount);

 stakedAmount[msg.sender] = 0;

 }

}

contract DeflationaryTokenTest is Test {

 DeflationaryToken public deflationaryToken;

 VictimContract public victimContract;

 address public user = vm.addr(1);

 function setUp() public {

 deflationaryToken = new DeflationaryToken();

SRC-01 HILTER

 victimContract = new VictimContract(address(deflationaryToken));

 deflationaryToken.transfer(address(victimContract), 10000);

 deflationaryToken.transfer(user, 10000);

 }

 function testIssue() public {

 vm.startPrank(user);

 deflationaryToken.approve(address(victimContract), 1000);

 uint256 victimBalanceBefore =

deflationaryToken.balanceOf(address(victimContract)); // balance before staking

 victimContract.stake(1000);

 victimContract.unstake();

 uint256 victimBalanceAfter =

deflationaryToken.balanceOf(address(victimContract)); // balance after unstaking

 vm.stopPrank();

 require(victimBalanceAfter < victimBalanceBefore, "error"); // victim

contract lost tokens

 }

}

Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support non-standard ERC20 tokens.

Alleviation

[Hilter Team, 08/01/2025]: Acknowledged, our Vaults will be using well-known ERC-20 stablecoins only, e.g. USDC

and USDT.

SRC-01 HILTER

SRC-03 THIRD-PARTY DEPENDENCIES

Category Severity Location Status

Volatile

Code
Minor

base/HilterBaseVault.sol (da9877): 55; vaults/UpsideVault.sol (d a

9877): 16
Acknowledged

Description

The contract is serving as the underlying entity to interact with third-parties asset token and collateral token. The scope of the

audit treats third-party entities as black boxes and assumes their functional correctness. However, in the real world, third

parties can be compromised and this may lead to lost or stolen assets.

Recommendation

We recommend that the project team constantly monitor the functionality of these contracts to mitigate any side effects that

may occur when unexpected changes are introduced.

Alleviation

[Hilter Team, 05/07/2025]:

Understood and agreed regarding third-party dependencies overall. For more context:

Asset Token will always be a USDC or USDT stablecoin.

 wHilter ill develop this contract from OpenZeppelin

standards.

SRC-03 HILTER

UVB-03 SHADOWING STATE VARIABLE

Category Severity Location Status

Coding Style Informational vaults/UpsideVault.sol (da9877): 23 Resolved

Description

The state variable _balances in the UpsideVault contract is shadowing the same named component in the parent

contract ERC20 . This means that when the derived contract accesses the state variable by its name, it will use the one

defined in the derived contract, not the one in the parent contract. This can lead to confusion.

Recommendation

It is suggested to rename the state variable that shadows another definition.

Alleviation

[Hilter Team, 05/07/2025]: The team heeded the advice and resolved the issue in commit:

9b86f2af463028173079c7180e231c6f14325c54.

UVB-03 HILTER

FORMAL VERIFICATION HILTER

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

function owner that returns the current owner,

functions renounceOwnership that removes ownership,

function transferOwnership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained

ownable-transferownership-correct Ownership is Transferred.

ownable-renounceownership-correct Ownership is Removed.

ownable-owner-succeed-normal owner Always Succeeds

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract HilterKYCProvider
(packages/contracts/src/HilterKYCProvider.sol) In Commit
da9877c0823663a5fca5f75f3a09b84e050dab8e

FORMAL VERIFICATION HILTER

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounce-ownership-is-permanent True

ownable-renounceownership-correct True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

FORMAL VERIFICATION HILTER

APPENDIX HILTER

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Access

Control
Access Control findings are about security vulnerabilities that make protected assets unsafe.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

APPENDIX HILTER

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed Ownable Properties

Properties related to function renounceOwnership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of renounceOwnership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

Properties related to function transferOwnership

APPENDIX HILTER

ownable-transferownership-correct

Invocations of transferOwnership(newOwner) must transfer the ownership to the newOwner .

Specification:

ensures this.owner() == newOwner;

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX HILTER

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This

report represents

an

extensive

assessing

process

intending

to

help

our

customers

increase

the

quality

of

their

code

while

reducing the

high

level

of

risk

presented

by

cryptographic

tokens

and

blockchain

technology.

Blockchain

technology

and

cryptographic

assets

present

a

high

level

of

ongoing

risk.

CertiK’s

position

is

that

each

company

and

individual

are

responsible

for

their

own

due

diligence

and

continuous

security.

CertiK’s

goal

is

to

help

reduce

the

attack

vectors

and

the

high

level

of

variance

associated

with

utilizing

new

and

consistently

changing

technologies,

and

in

no

way

claims

any

guarantee

of

security

or

functionality

of

the

technology

we

agree

to

analyze.

The

assessment

services

provided

by

CertiK

is

subject

to

dependencies

and

under

continuing

development.

You

agree

that

your

access

and/or

use,

including

but

not

limited

to

any

services,

reports,

and

materials,

will

be

at

your

sole

risk

on

an

as-is,

where-is,

and

as-available

basis.

Cryptographic

tokens

are

emergent

technologies

and

carry

with

them

high

levels

of

technical

risk

and

uncertainty.

The

assessment

reports

could

include

false

positives,

false

negatives,

and

other

unpredictable

results.

The

services

may

access,

and

depend

upon,

multiple

layers

of

third-parties.

ALL

SERVICES,

THE

LABELS,

THE

ASSESSMENT

REPORT,

WORK

PRODUCT,

OR

OTHER

MATERIALS,

OR

ANY

PRODUCTS

OR

RESULTS

OF

THE

USE

THEREOF

ARE

PROVIDED

“AS

IS”

AND

“AS

AVAILABLE”

AND

WITH

ALL

FAULTS

AND

DEFECTS

WITHOUT

WARRANTY

OF

ANY

KIND.

TO

THE

MAXIMUM

EXTENT

PERMITTED

UNDER

APPLICABLE

LAW,

CERTIK

HEREBY

DISCLAIMS

ALL

WARRANTIES,

WHETHER

EXPRESS,

IMPLIED,

STATUTORY,

OR

OTHERWISE

WITH

RESPECT

TO

THE

SERVICES,

ASSESSMENT

REPORT,

OR

OTHER

MATERIALS.

WITHOUT

LIMITING

THE

FOREGOING,

CERTIK

SPECIFICALLY

DISCLAIMS

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY,

FITNESS

FOR

A

PARTICULAR

PURPOSE,

TITLE

AND

NON-INFRINGEMENT,

AND

ALL

WARRANTIES

ARISING

FROM

COURSE

OF

DEALING,

USAGE,

OR

TRADE

PRACTICE.

WITHOUT

LIMITING

THE

FOREGOING,

CERTIK

MAKES

NO

WARRANTY

OF

ANY

KIND

THAT

THE

SERVICES,

THE

LABELS,

THE

ASSESSMENT

REPORT,

WORK

PRODUCT,

OR

OTHER

MATERIALS,

OR

ANY

PRODUCTS

OR

RESULTS

OF

THE

USE

THEREOF,

WILL

MEET

CUSTOMER’S

OR

ANY

OTHER

PERSON’S

REQUIREMENTS,

ACHIEVE

ANY

INTENDED

RESULT,

BE

COMPATIBLE

OR

WORK

WITH

ANY

SOFTWARE,

SYSTEM,

OR

OTHER

SERVICES,

OR

BE

SECURE,

ACCURATE,

COMPLETE,

FREE

OF

HARMFUL

CODE,

OR

ERROR-FREE.

WITHOUT

LIMITATION

TO

THE

FOREGOING,

CERTIK

PROVIDES

NO

WARRANTY

OR

DISCLAIMER HILTER

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER HILTER

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

 SHilter ecurity Assessment CertiK Assessed on July 30, 2025 Copyright © CertiK

