NN

VCERTIK

Security Assessment

Hilter

CertiK Assessed on July 30, 2025

@ CERTIK SUMMARY | HILTER

CertiK Assessed on July 30, 2025

Hilter

The security assessment was prepared by CertiK, the leader in Web3.0 security.

Executive Summary

TYPES ECOSYSTEM METHODS

DeFi EVM Compatible Formal Verification, Manual Review, Static Analysis
LANGUAGE TIMELINE KEY COMPONENTS

Solidity Delivered on 07/30/2025 N/A

CODEBASE COMMITS

https://gitlab.com/hilterltd-group/ o da9877c0823663a5fcas5f75f3a09b84e050dab8e

hilter-defi/packages/contracts/src

* 9b86f2af463028173079c7180e231c6f14325c54
View All in Codebase Page

View All in Codebase Page

Vulnerability Summary

6 4 2 0

Total Findings Resolved Mitigated Partially Resolved Acknowledged Declined

Critical risks are those that impact the safe functioning of
. a platform and must be addressed before launch. Users
M 0 Critical

should not invest in any project with outstanding critical

risks.

Major risks can include centralization issues and logical
. 0 MajOI‘ errors. Under specific circumstances, these major risks
can lead to loss of funds and/or control of the project.

i Medium risks may not pose a direct risk to users’ funds,
M 2 Medium 2 Resolved

C—— but they can affect the overall functioning of a platform.

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

1 Resolved, 2 Acknowledged

—— Integrity of the project, but they may be less efficient than
other solutions.

Minor

Informational errors are often recommendations to
. 1 Informational 1 Resolved improve the style of the code or certain operations to fall
coEEEEss—— within industry best practices. They usually do not affect

the overall functioning of the code.

@CERTIK

TABLE OF CONTENTS | HILTER

I Summary

Executive Summary

Vulnerability Summary

Codebase
Audit Scope

Approach & Methods

I Findings

SRC-02 : Potential Asset Lock in "FixedYieldVault” and "UpsideVault®

Contracts UVB-01 : Inconsistent Use of "Pausable” Contract in "UpsideVault®

HBV-01 : Tokens Transferred to Vault Will Be Locked

SRC-01 : Incompatibility With Deflationary Tokens (Non-standard ERC20 Token)

SRC-03 : Third-Party Dependencies

UVB-03 : Shadowing State Variable

I Formal Verification

Considered Functions And Scope

Verification Results

I Appendix

I Disclaimer

TABLE OF CONTENTS | HILTER

@ CERTIK CODEBASE | HILTER

CODEBASE | HILTER

I Repository

https://gitlab.com/hilterltd-group/hilter-defi/packages/contracts/src

I Commit

o da9877c0823663a5fcasbf75f3a09b84e050dab8e

* 9b86f2af463028173079c7180e231c6f14325c54

AUDIT SCOPE | HILTER

@CERTIK

AUDIT SCOPE | HILTER

30 files audited 2 files with Acknowledged findings « 28 files without findings

hilterltd-group/

SHA256 Checksum

746d77413ed9e406eable32cde5ae555ff23c

HBV base/HilterIBaseVault.sol
hilter-defi 112dfd40dcOb73fd6f7f761b7a5
uve hilteritd-group/ vaults/Upsidevault.sol 24b73c346770cd0b044ee45c0c8401725175
hilter-defi 72261d086e73cd474608569c4d44
i - . _ 1b9228¢72e6b2289ae5b18cd64373796dc4
HKY E!::erlt((j:i ?roup/ HilterKYCProvider.sol
lher-aemn adf3910bb1ce838f8680ba6329b4
ey hilterltd-group/ HilterFixedYieldVaultWithUpsid b020e54eb3fb146c8e9d997177a1197b8641
hilter-defi e.sol 77693707b66c04dbd567a11d620a
i . .) _ 07f7969bf5a99cc944bf92506659663634e717
HEV h!lterltd group/ HilterFixedYieldVault.sol
hilter-defi ale9964ada22bd9a395c0b8140
hilterltd-group/ .) 24619b65444c6bc19e69350145681b8e71b0
MVB extensions/MaturityVault.sol
hilter-defi 341b52aaff45fac8d032c2adb864
HEE hilterltd-group/ factories/HilterFixedYieldVaultFa 7b8658de2db4e7c17dd01bf149ad7b25ed 71
hilter-defi ctory.sol 2098037fc4e68b2a33bb195330a6
HUV hilterltd-group/ factories/HilterUpsideVaultFactory. 6eb9b98e837fb1f2d7c61d34ab354e7¢40135
hilter-defi sol 8860003286531b31c2163e581¢
hilterltd-group/ i) be881491aa86d2d203146ac91dbd92539a09
HVF factories/HilterlVaultFactory.sol
hilter-defi 851b94086d564267fe55dbeef729
hilterltd-group/ . 6a088c487a285941f97d1267b848fb0c5cd2
MCP plugins/MaxCapPlug.sol
hilter-defi 589f9fa2alb4341514430b7035
hilterltd-group/ . L c3e4faaadbb6ef3c05abdb6480fad6bfcO4ed
WPI plugins/WhitelistPlugin.sol
hilter-defi d9b545bf3213cc2f53b4aaa370
hilterltd-group/ . . c79b09843e9b2038710f7a33fa56b8810533d
WIN plugins/WindowPluglin.sol
hilter-defi 2629262a597441ed1d05c7fd775
hilterltd-group/) . c72a8297b9288698541a92a95197cecfefsi8
FYv vaults/FixedYieldVault.sol

hilter-defi

ddcc7dbee8d11cf6d3268c73db7

@CERTIK

IHB

IKY

HRE

MVU

HYF

HUF

HRD

IHU

IKC

MAX

WHI

WID

FIX

uvu

HYV

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi
hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/

hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

hilterltd-group/
hilter-defi

interface/IHilter.sol

interface/IKYCProvider.sol

base/HilterBaseVault.sol

extensions/MaturityVault.sol

factories/HilterFixedYieldVaultFa

ctory.sol

factories/HilterUpsideVaultFactory.sol

factories/HilterVaultFactory.sol

interface/IHilter.sol

interface/IKYCProvider.sol

plugins/MaxCapPlug.sol

plugins/WhitelistPlugin.sol

plugins/WindowPluglin.sol

vaults/FixedYieldVault.sol

vaults/UpsideVault.sol

HilterFixedYieldVault.sol

AUDIT SCOPE | HILTER

SHA256 Checksum

ce476844f5b7b27820becf49288f263d83034
68a3710b166dc746880dfab0fel

6bdbdec57340f10¢318c08f47c9ca20b77290
268de80ecc6e9cc9aaf71751bac

95d97f2861995ce59308b87f0a5e8b300197¢
64f660e998bc1d0f1f73dba8182

24619b65444c6bc19e69350145681b8e71b0
341b52aaff45fac8d032c2adb864

7b8658de2db4e7c17dd01bfl49ad7b25ed71
a098037fc4e68b2a33bb195330a6

6eb9b98e837fb1f2d7c61d34ab354e7c40135
8f860003286531b31c2163e581c

be881491aa86d2d203146ac91dbd92539a09
851b94086d564267fe55dbeef729

ce476844f5b7b27820becf49288f263d83034
68a3710b166dc746880dfab0fel

6bdbdec57340f10¢318c08f47c9ca20bh77290
268de80ecc6e9cc9aaf71751bac

6a088c4f87a285941f97d1267b848fb0c5cd2
5f89f9fa2alb4341514430b7035

c3e4faaadbb6ef3c05abdb6480ffad6bfc04ed
d9b545bf3213cc2f53b4aaa370

€79b09843e9b2038710f7a33fa56b8810533d
26a9262a597441ed1d05c7fd775

57b1a685c6050ac8ac95b0f2401145afa765a
b8e9d243dbfead354d9d4c5bbfc

3c3f66d642d7c9837285edb18400bf0581ch9
ae019df7edd8b292515317ch58e

07f7969bf5a99cc944bf92506659663634e7f7
ale9964ada22bhd9a395c0b8140

@ CERTIK AUDIT SCOPE | HILTER

SHA256 Checksum

hilterltd-group/ = HilterFixedYieldVaultWithUpside.sol b020e54eb3fb146c8e9d997177a1197b8641
HFW

hilter-defi 77693707b66c04dbd567a11d620a

hilterltd-group/ 1h9228¢7f2e6b2289ae5b18cd64373796dc4
HKC B HilterKYCProvider.sol

hilter-defi adf3910bb1ce838f8680ba6329b4

@ CERTIK APPROACH & METHODS | HILTER

APPROACH & METHODS HILTER

This report has been prepared for Hilter to discover issues and vulnerabilities in the source code of the Hilter project as
well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination

has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

« Testing the smart contracts against both common and uncommon attack vectors.
« Assessing the codebase to ensure compliance with current best practices and industry standards.
» Ensuring contract logic meets the specifications and intentions of the client.

s Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

e Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these
findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

e Testing the smart contracts against both common and uncommon attack vectors;

« Enhance general coding practices for better structures of source codes;

e Add enough unit tests to cover the possible use cases;

« Provide more comments per each function for readability, especially contracts that are verified in public;

« Provide more transparency on privileged activities once the protocol is live.

- @ CERTIK FINDINGS | HILTER

FINDINGS | HILTER

L g 6 0 1

Total Findings Critical Major Medium Minor Informational

This report has been prepared to discover issues and vulnerabilities for Hilter. Through this audit, we have uncovered
8 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

Potential Asset Lock In [FixedYieldvault

SRC-02 i i
And (Upsidevault] Contracts Logical Issue Medium ® Resolved

Inconsistent Use Of Pausable ContractIin Access)
UVB-01 Medium ® Resolved
UpsideVault Control

HBV-01 Tokens Transferred To Vault Will Be Locked Design Issue Minor ® Resolved

Incompatibility With Deflationary Tokens))
SRC-01 Volatile Code Minor Acknowledged
(Non-Standard ERC20 Token)

SRC-03 Third-Party Dependencies Volatile Code Minor Acknowledged

UVB-03 Shadowing State Variable Coding Style Informational ® Resolved

@ CERTIK SRC-02 HILTER

SRC-02 | POTENTIALASSET LOCK IN FixedYieldvault AND
Upsidevault CONTRACTS

Category Severity Location Status
Logical) base/HilterBaseVault.sol (da9877): 103; vaults/UpsideVault.sol (da

Medium ® Resolved
Issue 9877): 92

I Description

The FixedYieldvault and Upsidevault contracts use the totalAssetDeposited variable to track the total assets
deposited into the vault. This variable is adjusted upward during deposits and downward during withdrawals. However, if
assets are directly transferred into the vault without using the _deposit() function (e.g., through donations or direct

transfers), these assets are not recorded in totalAssetDeposited . they will be locked in the contract indefinitely.

Although this issue is somewhat mitigated since both contracts inherit from the Maturityvault contract, which includes a
_mature() function that adjusts totalAssetDeposited to match the current balance, this adjustment is not guaranteed to
occur before withdrawals are permitted. Moreover, tokens transferred after _mature() has been called would still be

locked.

I Recommendation

It is recommended to prevent tokens from being locked in the contract.

I Alleviation

[Hilter Team, 08/01/2025]: The team heeded the advice and resolved the issue in commit:
9b86f2af463028173079¢7180e231c6f14325c54.

@ CERTIK UVB-01 | HILTER

UVB-01 | INCONSISTENT USE OF Pausable CONTRACT IN

UpsideVault
Category Severity Location Status
Access Control Medium vaults/UpsideVault.sol (da9877): 52, 80 ® Resolved

I Description

The Upsidevault contractinherits from the Pausable contract, which provides functionality to pause and unpause
contract operations. However, the Upsidevault does not utilize the whenNotPaused modifier from the Pausable contract

inits _deposit() and _withdraw() functions. This oversight nullifies the benefits of having a pausable mechanism.

I Recommendation

It is recommended to apply whenNotPaused modifier in the Upsidevault 's _deposit() and _withdraw() functions.

I Alleviation

[Hilter Team, 08/01/2025]: The team heeded the advice and resolved the issue in commit:
9b86f2af463028173079c7180e231c6f14325c54.

@ CERTIK HBV-01 | HILTER

HBV-01 ‘ TOKENS TRANSFERRED TO VAULT WILL BE LOCKED

Category Severity Location SIEWS

Design Issue Minor base/HilterBaseVault.sol (da9877): 132, 140 ® Resolved

I Description

The comments of the transfer() and transferFrom() functionsinthe HilterBaseVault contractindicate that
tokens sent to the contract should allow for asset redemption. However, there appears to be no mechanism in the
provided code to handle the tokens once they reach the contract. This could lead to tokens being locked within the

contract with no clear method for users to retrieve the corresponding assets.

transfer(address to, uint256 value) override(ERC20, IERC20)
(bool) {

(to != address()) HilterVault_ TransferOutsideEcosystem();
address owner = _msgSender();

_transfer(owner, to, value);

4

transferFrom(address , address to, uint256 value)
override(ERC20, IERC20) (bool) {

(to != address()) HilterVault_TransferOutsideEcosystem();
address spender = _msgSender();

_spendAllowance(, spender, value);

_transfer(, to, value);

I Recommendation

It is recommended to revert any call to transfer() or transferFrom() .

I Alleviation

[Hilter Team, 05/07/2025]: The team heeded the advice and resolved the issue in commit:
9b86f2af463028173079c7180e231c6f14325c54.

@ CERTIK SRC-01 | HILTER

SRC-01 | INCOMPATIBILITY WITH DEFLATIONARY TOKENS (NON-
STANDARD ERC20 TOKEN)

Category Severity Location Status
Volatile i base/HilterBaseVault.sol (da9877): 82, 106; vaults/UpsideVault.sol

Minor Acknowledged
Code (da9877): 71, 72, 94, 97

I Description

The vault contracts are not equipped to handle non-standard ERC20 tokens, including deflationary or rebase tokens, which
may apply transaction fees or adjust balances dynamically. The contract's reliance on transferFrom() and transfer()
methods without validating the actual transferred amounts could result in discrepancies between expected and actual token
balances. This issue is particularly critical because it could lead to insufficient tokens available for depositors when

attempting to withdraw, potentially disrupting contract functionality and user transactions.

I Scenario

When transferring deflationary ERC20 tokens, the input amount may not equal the received amount due to the charged
transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually
arrive to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

I Proof of Concept

Foundry test:

@CERTIK

0.7.5;
abicoder v2;

"forge-std/Test.sol";
"@openzeppelin/contracts/token/ERC20/ERC20.s0l";

DeflationaryToken ERC20 {
address deadAddress = Ox0000000000000000000000000000OOOEOOOAOdEaD;
() ERC20 ("Test", "TEST") {
_mint(msg.sender, 1000000);

_transfer(address sender, address recipient, uint256 amount)
override {
uint256 burnAmount = 10 * amount / 100;
uint256 transferAmount = amount - burnAmount;
super._transfer(sender, deadAddress, burnAmount);

super._transfer(sender, recipient, transferAmount);

VictimContract {
address token;
(address => uint256) stakedAmount;

(address _token) {
token = _token;

stake(uint256 amount) {
ERC20(token).transferFrom(msg.sender, address(), amount);
stakedAmount[msg.sender] += amount;

unstake() {
uint256 amount = stakedAmount[msg.sender];
ERC20(token).transfer(msg.sender, amount);

stakedAmount[msg.sender] = 0;

DeflationaryTokenTest Test {
DeflationaryToken deflationaryToken;
VictimContract victimContract;
address user = vm.addr(1);

setUp()
deflationaryToken = DeflationaryToken();

SRC-01 | HILTER

@ CERTIK SRC01 | HILTER

victimContract = VictimContract(address(deflationaryToken));
deflationaryToken.transfer(address(victimContract), 10000);
deflationaryToken.transfer(user, 10000);

testIssue()
vm.startPrank(user);

deflationaryToken.approve(address(victimContract), 1000);

uint256 victimBalanceBefore =
deflationaryToken.balanceOf (address(victimContract));
victimContract.stake(1000);

victimContract.unstake();

uint256 victimBalanceAfter =
deflationaryToken.balanceOf (address(victimContract));

vm.stopPrank();

(victimBalanceAfter < victimBalanceBefore, "error");

I Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support non-standard ERC20 tokens.

I Alleviation

[Hilter Team, 08/01/2025]: Acknowledged, our Vaults will be using well-known ERC-20 stablecoins only, e.g. USDC
and USDT.

@ CERTIK SRC-03 | HILTER

SRC-03 ‘ THIRD-PARTY DEPENDENCIES

Category Severity Location Status
Volatile) base/HilterBaseVault.sol (da9877): 55; vaults/UpsideVault.sol (d a

Minor Acknowledged
Code 9877): 16

I Description

The contract is serving as the underlying entity to interact with third-parties asset token and collateral token. The scope of the
audit treats third-party entities as black boxes and assumes their functional correctness. However, in the real world, third

parties can be compromised and this may lead to lost or stolen assets.

I Recommendation

We recommend that the project team constantly monitor the functionality of these contracts to mitigate any side effects that

may occur when unexpected changes are introduced.

I Alleviation
[Hilter Team, 05/07/2025]:

Understood and agreed regarding third-party dependencies overall. For more context:

e Asset Token will always be a USDC or USDT stablecoin.

« Hilter will develop this contract from OpenZeppelin standards.

@ CERTIK UVB-03 | HILTER

UvB-03 ‘ SHADOWING STATE VARIABLE

Category Severity Location Status

Coding Style ® Informational vaults/UpsideVault.sol (da9877): 23 ® Resolved

I Description

The state variable _balances inthe Upsidevault contractis shadowing the same named component in the parent
contract ERC20 . This means that when the derived contract accesses the state variable by its name, it will use the one

defined in the derived contract, not the one in the parent contract. This can lead to confusion.

I Recommendation

It is suggested to rename the state variable that shadows another definition.

I Alleviation

[Hilter Team, 05/07/2025]: The team heeded the advice and resolved the issue in commit:
9b86f2af463028173079¢7180e231c6f14325c54.

@ CERTIK FORMAL VERIFICATION | HILTER

FORMAL VERIFICATION | HILTER

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire
contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they
guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

I Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

o function owner that returns the current owner,
o functions renounceownership that removes ownership,

o function transferownership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained
ownable-transferownership-correct Ownership is Transferred.
ownable-renounceownership-correct Ownership is Removed.
ownable-owner-succeed-normal owner Always Succeeds

I Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract HilterKYCProvider
(packages/contracts/src/HilterKYCProvider.sol) In Commit

da9877c0823663a5fcasf75f3a09b84e050dab8e

@CERTIK

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result

ownable-renounce-ownership-is-permanent ® True

ownable-renounceownership-correct ® True

Detailed Results for Function ' transferownership

Property Name Final Result

ownable-transferownership-correct ® True

Detailed Results for Function owner

Property Name Final Result

RENES

REINES

REINES

FORMAL VERIFICATION |

HILTER

ownable-owner-succeed-normal ® True

@ CERTIK APPENDIX HILTER

APPENDIX | HILTER

I Finding Categories

Categories Description

Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

Coding Style) o
improved to make the code more understandable and maintainable.
Access o) .
Control Access Control findings are about security vulnerabilities that make protected assets unsafe.
ontro
) Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and
Volatile Code

may result in vulnerabilities.
Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

o Centralization findings detail the design choices of designating privileged roles or other centralized
Centralization
controls over the code.

] Design Issue findings indicate general issues at the design level beyond program logic that are not
Design Issue o)
covered by other finding categories.

I Checksum Calculation Method

The "Checksum® field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum” command against the target file.

I Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a
mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.
The following assumptions and simplifications apply to our model:
o Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

« We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

@ CERTIK APPENDIX | HILTER

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which
allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well
as contract properties that are maintained by every observable state transition. Observable state transitions occur when the
contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed
by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean
connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use
the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

e requires [cond] -the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

e ensures [cond] -the condition cond , which refers to a function’s parameters, return values, and both \old and
current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition
held when it was invoked.

e invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

e constraint [cond] -the condition cond , which refers to both \old and current contract state variables, is
guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.
Description of the Analyzed Ownable Properties
Properties related to function renounceownership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of 'renounceownership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

Properties related to function transferOwnership

@ CERTIK APPENDIX HILTER

ownable-transferownership-correct

Invocations of transferOwnership(newOwner) must transfer the ownership to the newoOwner .

Specification:

ensures this.owner() == newOwner;

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

Specification:

reverts_only when false;

@ CERTIK DISCLAIMER | HILTER

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report represents an extensive assessing process intending to help our customers increase the quality of their

code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK's goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

@ CERTIK DISCLAIMER | HILTER

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS ARESULT OF THE USE OF ANY
CONTENT, OR (Il) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER'’'S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE ATHIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE ATHIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

CertiK | Securing the Web3 \World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a
leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

Hilter Security Assessment | CertiK Assessed on-July 30, 2025 |- Copyright © CertiK

